255 research outputs found

    Charged particles in a rotating magnetic field

    Get PDF
    We study the valence electron of an alkaline atom or a general charged particle with arbitrary spin and with magnetic moment moving in a rotating magnetic field. By using a time-dependent unitary transformation, the Schr\"odinger equation with the time-dependent Hamiltonian can be reduced to a Schr\"odinger-like equation with a time-independent effective Hamiltonian. Eigenstates of the effective Hamiltonian correspond to cyclic solutions of the original Schr\"odinger equation. The nonadiabatic geometric phase of a cyclic solution can be expressed in terms of the expectation value of the component of the total angular momentum along the rotating axis, regardless of whether the solution is explicitly available. For the alkaline atomic electron and a strong magnetic field, the eigenvalue problem of the effective Hamiltonian is completely solved, and the geometric phase turns out to be a linear combination of two solid angles. For a weak magnetic field, the same problem is solved partly. For a general charged particle, the problem is solved approximately in a slowly rotating magnetic field, and the geometric phases are also calculated.Comment: REVTeX, 13 pages, no figure. There are two minor errors in the published version due to incorrect editing by the publisher. The "spin-1" in Sec. I and the "spin 1" in Sec. II below Eq. (2c) should both be changed to "spin" or "spin angular momentum". The preferred E-mail for correspondence is [email protected] or [email protected]

    Geometric Phases and Multiple Degeneracies in Harmonic Resonators

    Full text link
    In a recent experiment Lauber et al. have deformed cyclically a microwave resonator and have measured the adiabatic normal-mode wavefunctions for each shape along the path of deformation. The nontrivial observed cyclic phases around a 3-fold degeneracy were accounted for by Manolopoulos and Child within an approximate theory. However, open-path geometrical phases disagree with experiment. By solving exactly the problem, we find unsuspected extra degeneracies around the multiple one that account for the measured phase changes throughout the path. It turns out that proliferation of additional degeneracies around a multiple one is a common feature of quantum mechanics.Comment: 4 pages, 4 figures. Accepted in Phys. Rev. Let

    Lipoic acid and diabetes-Part III: Metabolic role of acetyl dihydrolipoic acid

    Get PDF
    Rat liver lipoyl transacetylase catalyzes the formation of acetyl dihydrolipoic acid from acetyl coenzyme A and dihydrolipoic acid. In an earlier paper the formation of acetyl dihydrolipoic from pyruvate and dihydrolipoic acid catalyzed by pyruvate dehydrogenase has been reported. Acetyl dihydrolipoic acid is a substrate for citrate synthase, acetyl coenzyme A carboxylase and fatty acid synthetase. The Vmax for citrate synthase with acetyl dihydrolipoic acid was identical to acetyl coenzyme A (approximately 1 μmol citrate formed/min/mg protein) while the apparent Km was approximately 4 times higher with acetyl dihydrolipoic acid as the substrate. This may be due to the fact that synthetic acetyl dihydrolipoic acid is a mixture of 4 possible isomers and only one of them may be the substrate for the enzymatic reaction. While dihydrolipoic acid can replace coenzyme A in the activation of succinate catalyzed by succinyl coenzyme A synthetase, the transfer of coenzyme A between succinate and acetoacetyl dihydrolipoic acid catalyzed by succinyl coenzyme A: 3 oxo-acid coenzyme A transferase does not occur

    Observation of off-diagonal geometric phase in polarized neutron interferometer experiments

    Full text link
    Off-diagonal geometric phases acquired in the evolution of a spin-1/2 system have been investigated by means of a polarized neutron interferometer. Final counts with and without polarization analysis enable us to observe simultaneously the off-diagonal and diagonal geometric phases in two detectors. We have quantitatively measured the off-diagonal geometric phase for noncyclic evolutions, confirming the theoretical predictions. We discuss the significance of our experiment in terms of geometric phases (both diagonal and off-diagonal) and in terms of the quantum erasing phenomenon.Comment: pdf, 22 pages + 8 figures (included in the pdf). In print on Phys. Rev.

    Lipoic acid and diabetes II: Mode of action of lipoic acid

    Get PDF
    Intraperitoneal administration of lipoic acid (10 mg/100 g) does not effect changes in serum insulin levels in normal and alloxan diabetic rats, while normalising increased serum pyruvate, and impaired liver pyruvic dehydrogenase characteristic of the diabetic state. Dihydrolipoic acid has been shown to participate in activation of fatty acids with equal facility as coenzyme A. Fatty acyl dihydrolipoic acid however is sparsely thiolyzed to yield acetyl dihydrolipoic acid. Also acetyl dihydrolipoic acid does not activate pyruvate carboxylase unlike acetyl coenzyme A. The reduced thiolysis of β-keto fatty acyl dihydrolipoic acid esters and the lack of activation of pyruvic carboxylase by acetyl dihydrolipoic acid could account for the antiketotic and antigluconeogenic effects of lipoic acid

    Geometric phases for neutral and charged particles in a time-dependent magnetic field

    Full text link
    It is well known that any cyclic solution of a spin 1/2 neutral particle moving in an arbitrary magnetic field has a nonadiabatic geometric phase proportional to the solid angle subtended by the trace of the spin. For neutral particles with higher spin, this is true for cyclic solutions with special initial conditions. For more general cyclic solutions, however, this does not hold. As an example, we consider the most general solutions of such particles moving in a rotating magnetic field. If the parameters of the system are appropriately chosen, all solutions are cyclic. The nonadiabatic geometric phase and the solid angle are both calculated explicitly. It turns out that the nonadiabatic geometric phase contains an extra term in addition to the one proportional to the solid angle. The extra term vanishes automatically for spin 1/2. For higher spin, however, it depends on the initial condition. We also consider the valence electron of an alkaline atom. For cyclic solutions with special initial conditions in an arbitrary strong magnetic field, we prove that the nonadiabatic geometric phase is a linear combination of the two solid angles subtended by the traces of the orbit and spin angular momenta. For more general cyclic solutions in a strong rotating magnetic field, the nonadiabatic geometric phase also contains extra terms in addition to the linear combination.Comment: revtex, 18 pages, no figur

    Noncyclic geometric phase for neutrino oscillation

    Get PDF
    We provide explicit formulae for the noncyclic geometric phases or Pancharatnam phases of neutrino oscillations. Since Pancharatnam phase is a generalization of the Berry phase, our results generalize the previous findings for Berry phase in a recent paper [Phys. Lett. B, 466 (1999) 262]. Unlike the Berry phase, the noncyclic geometric phase offers distinctive advantage in terms of measurement and prediction. In particular, for three-flavor mixing, our explicit formula offers an alternative means of determining the CP-violating phase. Our results can also be extended easily to explore geometric phase associated with neutron-antineutron oscillations

    Off-Diagonal Geometric Phases

    Get PDF
    We investigate the adiabatic evolution of a set of non-degenerate eigenstates of a parameterized Hamiltonian. Their relative phase change can be related to geometric measurable quantities that extend the familiar concept of Berry phase to the evolution of more than one state. We present several physical systems where these concepts can be applied, including an experiment on microwave cavities for which off-diagonal phases can be determined from published data.Comment: 5 pages 2 figures - RevTeX. Revised version including geometrical interpretatio

    Non-commutative Kerr black hole

    Full text link
    This paper applies the first-order Seiberg-Witten map to evaluate the first-order non-commutative Kerr tetrad. The classical tetrad is taken to follow the locally non-rotating frame prescription. We also evaluate the tiny effect of non-commutativity on the efficiency of the Penrose process of rotational energy extraction from a black hole.Comment: 14 pages. The original calculations are completely ne

    Time evolution, cyclic solutions and geometric phases for general spin in an arbitrarily varying magnetic field

    Full text link
    A neutral particle with general spin and magnetic moment moving in an arbitrarily varying magnetic field is studied. The time evolution operator for the Schr\"odinger equation can be obtained if one can find a unit vector that satisfies the equation obeyed by the mean of the spin operator. There exist at least 2s+12s+1 cyclic solutions in any time interval. Some particular time interval may exist in which all solutions are cyclic. The nonadiabatic geometric phase for cyclic solutions generally contains extra terms in addition to the familiar one that is proportional to the solid angle subtended by the closed trace of the spin vector.Comment: revtex4, 8 pages, no figur
    corecore