24 research outputs found

    Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock , in the rat brain

    Full text link
    High densities of the mRNA of three rhythm-related genes, rPeriod1 (rPer1), rPer2 , and rClock , which share high homology in Drosophila and mammals, are found in the rat hypothalamic suprachiasmatic nucleus (SCN). The SCN, however, is not the only brain region that expresses these genes. To understand the possible physiological roles of these rhythm-related genes, we examined expression of these genes in different brain regions at various time points in male Sprague--Dawley rats. Using semi quantitative in situ hybridization with 35 S-riboprobes to evaluate mRNA levels, the diurnal rhythmicity of rPer1, and rPer2 mRNA levels was found in the SCN, arcuate nucleus, and median eminence/pars tuberalis. Expression patterns of mRNA for rPer1 and rPer2 , however, were not similar in these brain regions. The rhythmicity in these brain regions was specific, because it was not observed in the cerebellum or hippocampus. Moreover, diurnal changes in rClock mRNA expression were not detected in any of the brain regions examined. These findings suggest that the different expression patterns observed for rPer1, rPer2 , and rClock mRNAs may be attributed to their different physiological roles in these brain regions, and support previous work indicating that circadian rhythms in the brain are widespread.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43939/1/11373_2004_Article_8176.pd

    How far droplets can move in indoor environments - revisiting the Wells evaporation-falling curve

    No full text
    A large number of infectious diseases are believed to be transmitted between people via large droplets and by airborne routes. An understanding of evaporation and dispersion of droplets and droplet nuclei is not only significant for developing effective engineering control methods for infectious diseases but also for exploring the basic transmission mechanisms of the infectious diseases. How far droplets can move is related to how far droplet-borne diseases can transmit. A simple physical model is developed and used here to investigate the evaporation and movement of droplets expelled during respiratory activities; in particular, the well-known Wells evaporation-falling curve of droplets is revisited considering the effect of relative humidity, air speed, and respiratory jets. Our simple model considers the movement of exhaled air, as well as the evaporation and movement of a single droplet. Exhaled air is treated as a steady-state non-isothermal (warm) jet horizontally issuing into stagnant surrounding air. A droplet is assumed to evaporate and move in this non-isothermal jet. Calculations are performed for both pure water droplets and droplets of sodium chloride (physiological saline) solution (0.9% w/v). We calculate the droplet lifetimes and how droplet size changes, as well as how far the droplets travel in different relative humidities. Our results indicate that a droplet's size predominately dictates its evaporation and movement after being expelled. The sizes of the largest droplets that would totally evaporate before falling 2 m away are determined under different conditions. The maximum horizontal distances that droplets can reach during different respiratory activities are also obtained. Our study is useful for developing effective prevention measures for controlling infectious diseases in hospitals and in the community at large. © 2007 The Authors Journal compilation 2007 Blackwell Munksgaard.link_to_subscribed_fulltex

    Model selection for penalized spline smoothing using akaike information criteria

    No full text
    Wager C, Vaida F, Kauermann G. Model selection for penalized spline smoothing using akaike information criteria. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS. 2007;49(2):173-190
    corecore