5 research outputs found

    Biomechanical Analysis of an Interspinous Process Fixation Device with In Situ Shortening Capabilities: Does Spinous Process Compression Improve Segmental Stability?

    Get PDF
    OBJECTIVE: The objective of this study was to characterize the biomechanical implications of spinous process compression, via in situ shortening of a next-generation interspinous process fixation (ISPF) device, in the context of segmental fusion. METHODS: Seven lumbar cadaveric spines (L1-L4) were tested. Specimens were first tested in an intact state, followed by iterative instrumentation at L2-3 and subsequent testing. The order followed was 1) stand-alone ISPF (neutral height); 2) stand-alone ISPF (shortened in situ from neutral height; shortened); 3) lateral lumbar interbody fusion (LLIF) + ISPF (neutral); 4) LLIF + ISPF (shortened); 5) LLIF + unilateral pedicle screw fixation; 6) LLIF + bilateral pedicle screw fixation. A 7.5-Nm moment was applied in flexion/extension, lateral bending, and axial rotation via a kinematic test frame. Segmental range of motion (ROM) and lordosis were measured for all constructs. Comparative analysis was performed. RESULTS: Statistically significant flexion/extension ROM reductions: all constructs versus intact condition (P \u3c 0.01); LLIF + ISPF (neutral and shortened) versus stand-alone ISPF (neutral and shortened) (P \u3c 0.01); LLIF + USPF versus ISPF (neutral) (P = 0.049); bilateral pedicle screw fixation (BPSF) versus stand-alone ISPF (neutral and shortened) (P \u3c 0.01); LLIF + BPSF versus LLIF + unilateral pedicle screw fixation (UPSF) (P \u3c 0.01). Significant lateral bending ROM reductions: LLIF + ISPF (neutral and shortened) versus intact condition and stand-alone ISPF (neutral) (P \u3c 0.01); LLIF + UPSF versus intact condition and stand-alone ISPF (neutral and shortened) (P \u3c 0.01); LLIF + BPSF versus intact condition and all constructs (P \u3c 0.01). Significant axial rotation ROM reductions: LLIF + ISPF (shortened) and LLIF + UPSF versus intact condition and stand-alone ISPF (neutral) (P ≤ 0.01); LLIF + BPSF versus intact condition and all constructs (P ≤ 0.04). CONCLUSIONS: In situ shortening of an adjustable ISPF device may support increased segmental stabilization compared with static ISPF

    Thoracic Spinal Subdural Hematoma Complicating Anterior Cervical Discectomy and Fusion: Case Report.

    No full text
    A spinal subdural hematoma is a rare clinical entity with considerable consequences without prompt diagnosis and treatment. Throughout the literature, there are limited accounts of spinal subdural hematoma formation following spinal surgery. This report is the first to describe the formation of a spinal subdural hematoma in the thoracic spine following surgery at the cervical level. A 53-year-old woman developed significant paraparesis several hours after anterior cervical discectomy and fusion of C5-6. Expeditious return to operating room for anterior cervical revision decompression was performed, and the epidural hematoma was evacuated without difficulty. Postoperative imaging demonstrated a subdural hematoma confined to the thoracic level, and the patient was returned to the operating room for a third surgical procedure. Decompression of T1-3, with evacuation of the subdural hematoma was performed. Postprocedure, the patient\u27s sensory and motor deficits were restored, and, with rehabilitation, the patient gained functional mobility. Spinal subdural hematomas should be considered as a rare but potential complication of cervical discectomy and fusion. With early diagnosis and treatment, favorable outcomes may be achieved

    Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene

    No full text
    Allelic heterogeneity in disease-causing genes presents a substantial challenge to the translation of genomic variation into clinical practice. Few of the almost 2,000 variants in the cystic fibrosis transmembrane conductance regulator gene CFTR have empirical evidence that they cause cystic fibrosis. To address this gap, we collected both genotype and phenotype data for 39,696 individuals with cystic fibrosis in registries and clinics in North America and Europe. In these individuals, 159 CFTR variants had an allele frequency of ≥0.01%. These variants were evaluated for both clinical severity and functional consequence, with 127 (80%) meeting both clinical and functional criteria consistent with disease. Assessment of disease penetrance in 2,188 fathers of individuals with cystic fibrosis enabled assignment of 12 of the remaining 32 variants as neutral, whereas the other 20 variants remained of indeterminate effect. This study illustrates that sourcing data directly from well-phenotyped subjects can address the gap in our ability to interpret clinically relevant genomic variation.This work was supported by grants from the NIDDK (5R37DK044003 to G.R.C.) and the US NIH (DK49835 to P.J.T.) and by funding from Cystic Fibrosis Foundation Therapeutics, Inc. (to P.J.T.), the US Cystic Fibrosis Foundation (CUTTING08A, CUTTING09A and CUTTING10A to G.R.C. and SOSNAY10Q to P.R.S.) and FCTPortugal (PIC/IC/83103/2007 and PEstOE/BIA/UI4046/2011 to M.D.A. and BioFIG)
    corecore