43 research outputs found

    Functional Characterization of the Canine Heme-Regulated eIF2α Kinase: Regulation of Protein Synthesis

    Get PDF
    The heme-regulated inhibitor (HRI) negatively regulates protein synthesis by phosphorylating eukaryotic initiation factor-2α (eIF2α) thereby inhibiting protein translation. The importance of HRI in regulating hemoglobin synthesis in erythroid cells makes it an attractive molecular target in need of further characterization. In this work, we have cloned and expressed the canine form of the HRI kinase. The canine nucleotide sequence has 86%, 82%, and 81% identity to the human, mouse, and rat HRI, respectively. It was noted that an isoleucine residue in the ATP binding site of human, rat, and mouse HRI is replaced by a valine in the canine kinase. The expression of canine HRI protein by in vitro translation using wheat germ lysate or in Sf9 cells using a baculovirus expression system was increased by the addition of hemin. Following purification, the canine protein was found to be 72 kD and showed kinase activity determined by its ability to phosphorylate a synthetic peptide substrate. Quercetin, a kinase inhibitor known to inhibit mouse and human HRI, inhibits canine HRI in a concentration-dependent manner. Additionally, quercetin is able to increase de novo protein synthesis in canine reticulocytes. We conclude that the canine is a suitable model species for studying the role of HRI in erythropoiesis

    Psychological interventions in asthma

    Get PDF
    Asthma is a multifactorial chronic respiratory disease characterised by recurrent episodes of airway obstruction. The current management of asthma focuses principally on pharmacological treatments, which have a strong evidence base underlying their use. However, in clinical practice, poor symptom control remains a common problem for patients with asthma. Living with asthma has been linked with psychological co-morbidity including anxiety, depression, panic attacks and behavioural factors such as poor adherence and suboptimal self-management. Psychological disorders have a higher-than-expected prevalence in patients with difficult-to-control asthma. As psychological considerations play an important role in the management of people with asthma, it is not surprising that many psychological therapies have been applied in the management of asthma. There are case reports which support their use as an adjunct to pharmacological therapy in selected individuals, and in some clinical trials, benefit is demonstrated, but the evidence is not consistent. When findings are quantitatively synthesised in meta-analyses, no firm conclusions are able to be drawn and no guidelines recommend psychological interventions. These inconsistencies in findings may in part be due to poor study design, the combining of results of studies using different interventions and the diversity of ways patient benefit is assessed. Despite this weak evidence base, the rationale for psychological therapies is plausible, and this therapeutic modality is appealing to both patients and their clinicians as an adjunct to conventional pharmacological treatments. What are urgently required are rigorous evaluations of psychological therapies in asthma, on a par to the quality of pharmaceutical trials. From this evidence base, we can then determine which interventions are beneficial for our patients with asthma management and more specifically which psychological therapy is best suited for each patient

    A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants

    Get PDF
    Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea () is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia

    A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15-1.73 GHz

    Full text link
    We conducted a search for narrowband radio signals over four observing sessions in 2020-2023 with the L-band receiver (1.15-1.73 GHz) of the 100 m diameter Green Bank Telescope. We pointed the telescope in the directions of 62 TESS Objects of Interest, capturing radio emissions from a total of ~11,680 stars and planetary systems in the ~9 arcminute beam of the telescope. All detections were either automatically rejected or visually inspected and confirmed to be of anthropogenic nature. In this work, we also quantified the end-to-end efficiency of radio SETI pipelines with a signal injection and recovery analysis. The UCLA SETI pipeline recovers 94.0% of the injected signals over the usable frequency range of the receiver and 98.7% of the injections when regions of dense RFI are excluded. In another pipeline that uses incoherent sums of 51 consecutive spectra, the recovery rate is ~15 times smaller at ~6%. The pipeline efficiency affects calculations of transmitter prevalence and SETI search volume. Accordingly, we developed an improved Drake Figure of Merit and a formalism to place upper limits on transmitter prevalence that take the pipeline efficiency and transmitter duty cycle into account. Based on our observations, we can state at the 95% confidence level that fewer than 6.6% of stars within 100 pc host a transmitter that is detectable in our search (EIRP > 1e13 W). For stars within 20,000 ly, the fraction of stars with detectable transmitters (EIRP > 5e16 W) is at most 3e-4. Finally, we showed that the UCLA SETI pipeline natively detects the signals detected with AI techniques by Ma et al. (2023).Comment: 22 pages, 9 figures, submitted to AJ, revise
    corecore