3 research outputs found

    Genome-wide association study in patients with posterior urethral valves

    Get PDF
    Congenital lower urinary tract obstructions (LUTO) are most often caused by posterior urethral valves (PUV), a male limited anatomical obstruction of the urethra affecting 1 in 4,000 male live births. Little is known about the genetic background of PUV. Here, we report the largest genome-wide association study (GWAS) for PUV in 4 cohorts of patients and controls. The final meta-analysis included 756 patients and 4,823 ethnicity matched controls and comprised 5,754,208 variants that were genotyped or imputed and passed quality control in all 4 cohorts. No genome-wide significant locus was identified, but 33 variants showed suggestive significance (P < 1 × 10−5). When considering only loci with multiple variants residing within < 10 kB of each other showing suggestive significance and with the same effect direction in all 4 cohorts, 3 loci comprising a total of 9 variants remained. These loci resided on chromosomes 13, 16, and 20. The present GWAS and meta-analysis is the largest genetic study on PUV performed to date. The fact that no genome-wide significant locus was identified, can be explained by lack of power or may indicate that common variants do not play a major role in the etiology of PUV. Nevertheless, future studies are warranted to replicate and validate the 3 loci that yielded suggestive associations

    Human exome and mouse embryonic expression data implicateZFHX3,TRPS1, andCHD7in human esophageal atresia

    Get PDF
    Introduction Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) occurs approximately 1 in 3.500 live births representing the most common malformation of the upper digestive tract. Only half a century ago, EA/TEF was fatal among affected newborns suggesting that the steady birth prevalence might in parts be due to mutationalde novoevents in genes involved in foregut development. Methods To identify mutationalde novoevents in EA/TEF patients, we surveyed the exome of 30 case-parent trios. Identified and confirmedde novovariants were prioritized usingin silicoprediction tools. To investigate the embryonic role of genes harboring prioritizedde novovariants we performed targeted analysis of mouse transcriptome data of esophageal tissue obtained at the embryonic day (E) E8.5, E12.5, and postnatal. Results In total we prioritized 14 novelde novovariants in 14 different genes (APOL2,EEF1D,CHD7,FANCB,GGT6,KIAA0556,NFX1,NPR2,PIGC,SLC5A2,TANC2,TRPS1,UBA3, andZFHX3) and eight rarede novovariants in eight additional genes (CELSR1,CLP1,GPR133,HPS3,MTA3,PLEC,STAB1, andPPIP5K2). Through personal communication during the project, we identified an additional EA/TEF case-parent trio with a rarede novovariant inZFHX3.In silicoprediction analysis of the identified variants and comparative analysis of mouse transcriptome data of esophageal tissue obtained at E8.5, E12.5, and postnatal prioritizedCHD7,TRPS1, andZFHX3as EA/TEF candidate genes. Re-sequencing ofZFHX3in additional 192 EA/TEF patients did not identify further putative EA/TEF-associated variants. Conclusion Our study suggests that rare mutationalde novoevents in genes involved in foregut development contribute to the development of EA/TEF

    Human exome and mouse embryonic expression data implicate ZFHX3, TRPS1, and CHD7 in human esophageal atresia

    No full text
    Introduction: Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) occurs approximately 1 in 3.500 live births representing the most common malformation of the upper digestive tract. Only half a century ago, EA/TEF was fatal among affected newborns suggesting that the steady birth prevalence might in parts be due to mutational de novo events in genes involved in foregut development. Methods: To identify mutational de novo events in EA/TEF patients, we surveyed the exome of 30 case-parent trios. Identified and confirmed de novo variants were prioritized using in silico prediction tools. To investigate the embryonic role of genes harboring prioritized de novo variants we performed targeted analysis of mouse transcriptome data of esophageal tissue obtained at the embryonic day (E) E8.5, E12.5, and postnatal. Results: In total we prioritized 14 novel de novo variants in 14 different genes (APOL2, EEF1D, CHD7, FANCB, GGT6, KIAA0556, NFX1, NPR2, PIGC, SLC5A2, TANC2, TRPS1, UBA3, and ZFHX3) and eight rare de novo variants in eight additional genes (CELSR1, CLP1, GPR133, HPS3, MTA3, PLEC, STAB1, and PPIP5K2). Through personal communication during the project, we identified an additional EA/TEF case-parent trio with a rare de novo variant in ZFHX3. In silico prediction analysis of the identified variants and comparative analysis of mouse transcriptome data of esophageal tissue obtained at E8.5, E12.5, and postnatal prioritized CHD7, TRPS1, and ZFHX3 as EA/TEF candidate genes. Re-sequencing of ZFHX3 in additional 192 EA/TEF patients did not identify further putative EA/TEF-associated variants. Conclusion: Our study suggests that rare mutational de novo events in genes involved in foregut development contribute to the development of EA/TEF
    corecore