3 research outputs found

    EEG Signal Analysis for Effective Classification of Brain States

    Get PDF
    EEG (Electroencephalogram) is a non-stationary signal that has been well established to be used for studying various states of the brain, in general, and several disorders, in particular. This work presents efficient signal processing and classification of the EEG signal. The digital filters used during decomposition of the input EEG signal have transfer functions which are simple and easily realizable on digital signal processors (DSP) and embedded systems. The features selected in this study; energy, entropy and variance; are among the most efficient and informative to analyze the EEG signal strength and distribution for detecting brain disorders such as seizure. Training and testing of the extracted features are performed using linear kernel (Support Vector Machine) SVM and thresholding in DSP algorithms and hardware, respectively. The experimental results for the digital signal processing algorithms show a high classification accuracy of 95% in the occurrence of seizure in epileptic patients. The techniques in this work are also under investigation for classifying other brain states/disorders such as sleep stages, sleep apnea and multiple sclerosis

    Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation

    Get PDF
    Sleep specialists often conduct manual sleep stage scoring by visually inspecting the patient’s neurophysiological signals collected at sleep labs. This is, generally, a very difficult, tedious and time-consuming task. The limitations of manual sleep stage scoring have escalated the demand for developing Automatic Sleep Stage Classification (ASSC) systems. Sleep stage classification refers to identifying the various stages of sleep and is a critical step in an effort to assist physicians in the diagnosis and treatment of related sleep disorders. The aim of this paper is to survey the progress and challenges in various existing Electroencephalogram (EEG) signal-based methods used for sleep stage identification at each phase; including pre-processing, feature extraction and classification; in an attempt to find the research gaps and possibly introduce a reasonable solution. Many of the prior and current related studies use multiple EEG channels, and are based on 30 s or 20 s epoch lengths which affect the feasibility and speed of ASSC for real-time applications. Thus, in this paper, we also present a novel and efficient technique that can be implemented in an embedded hardware device to identify sleep stages using new statistical features applied to 10 s epochs of single-channel EEG signals. In this study, the PhysioNet Sleep European Data Format (EDF) Database was used. The proposed methodology achieves an average classification sensitivity, specificity and accuracy of 89.06%, 98.61% and 93.13%, respectively, when the decision tree classifier is applied. Finally, our new method is compared with those in recently published studies, which reiterates the high classification accuracy performance.https://doi.org/10.3390/e1809027

    OA-Pain-Sense: Machine Learning Prediction of Hip and Knee Osteoarthritis Pain from IMU Data

    No full text
    Joint pain is a prominent symptom of Hip and Knee Osteoarthritis (OA), impairing patients’ movements and affecting the joint mechanics of walking. Self-report questionnaires are currently the gold standard for Hip OA and Knee OA pain assessment, presenting several problems, including the fact that older individuals often fail to provide accurate self-pain reports. Passive methods to assess pain are desirable. This study aims to explore the feasibility of OA-Pain-Sense, a passive, automatic Machine Learning-based approach that predicts patients’ self-reported pain levels using SpatioTemporal Gait features extracted from the accelerometer signal gathered from an anterior-posterior wearable sensor. To mitigate inter-subject variability, we investigated two types of data rescaling: subject-level and dataset-level. We explored six different binary machine learning classification models for discriminating pain in patients with Hip OA or Knee OA from healthy controls. In rigorous evaluation, OA-Pain-Sense achieved an average accuracy of 86.79% using the Decision Tree and 83.57% using Support Vector Machine classifiers for distinguishing Hip OA and Knee OA patients from healthy subjects, respectively. Our results demonstrate that OA-Pain-Sense is feasible, paving the way for the development of a pain assessment algorithm that can support clinical decision-making and be used on any wearable device, such as smartphones
    corecore