7 research outputs found

    Design of a Multi-Epitopes Based Chimeric Vaccine against Enterobacter cloacae Using Pan-Genome and Reverse Vaccinology Approaches

    No full text
    Enterobacter cloacae (EC) is a significant emerging pathogen that is occasionally associated with lung infection, surgical site infection, urinary infection, sepsis, and outbreaks in neonatal intensive care units. In light of the fact that there is currently no approved vaccine or therapeutic option for the treatment of EC, the current study was developed to concentrate on applications based on modern computational approaches to design a multi-epitope-based E. cloacae peptide vaccine (MEBEPV) expressing the antigenic determinants prioritized from the EC genome. Integrated computational analyses identified two potential protein targets (phosphoporin protein-PhoE and putative outer-membrane porin protein) for further exploration on the basis of pangenome subtractive proteomics and immunoinformatic in-depth examination of the core proteomes. Then, a multi-epitope peptide vaccine was designed, which comprised shortlisted epitopes that were capable of eliciting both innate and adaptive immunity, as well as the cholera toxin’s B-subunit, which was used as an adjuvant in the vaccine formulation. To ensure maximum expression, the vaccine’s 3D structure was developed and the loop was refined, improving the stability by disulfide engineering, and the physicochemical characteristics of the recombinant vaccine sequence were found to be ideal for both in vitro and in vivo experimentation. Blind docking was then used for the prediction of the MEBEPV predominant blinding mode with MHCI, MHCII, and TLR3 innate immune receptors, with lowest global energy of −18.64 kJ/mol, −48.25 kJ/mol, and −5.20 kJ/mol for MHC-I, MHC-II, and TLR-4, respectively, with docked complexes considered for simulation. In MD and MMGBSA investigations, the docked models of MEBEPV-TLR3, MEBEPV-MHCI, and MEBEPV-MHCII were found to be stable during the course of the simulation. MM-GBSA analysis calculated −122.17 total net binding free energies for the TLR3-vaccine complex, −125.4 for the MHC I-vaccine complex, and −187.94 for the MHC II-vaccine complex. Next, MM-PBSA analysis calculated −115.63 binding free energy for the TLR3-vaccine complex, −118.19 for the MHC I-vaccine complex, and −184.61 for the MHC II-vaccine complex. When the vaccine was tested in silico, researchers discovered that it was capable of inducing both types of immune responses (cell mediated and humoral) at the same time. Even though the suggested MEBEPV has the potential to be a powerful contender against E. cloacae-associated illnesses, further testing in the laboratory will be required before it can be declared safe and immunogenic

    Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management

    No full text
    The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described

    Sustainable Extraction, Chemical Profile, Cytotoxic and Antileishmanial Activities In-Vitro of Some <i>Citrus</i> Species Leaves Essential Oils

    No full text
    Anti-leishmanial drugs extracted from natural sources have not been sufficiently explored in the literature. Until now, leishmaniasis treatments have been limited to synthetic and expensive drugs. This study investigated, for the first time, the anti-leishmanial efficacy of essential oils (EOs) from the leaves of Citrus species (C. sinensis, C. limon, and C. clementina). Essential oils were extracted from three species by solvent free microwave extraction (SFME); in addition, lemon oil was also isolated by hydro-distillation (HD). These were investigated using gas chromatography coupled with mass spectrometry (GC–MS) and evaluated against Leishmania species, namely Leishmania major and Leishmania infantum, using a mitochondrial tetrazolium test (MTT) assay. The chemical compositions of Citrus limon EOs obtained by HD and SFME showed some differences. The identified peaks of C. limon (SFME) represented 93.96%, where linalool was the major peak (44.21%), followed by sabinene (14.22%) and ocimene (6.09%). While the hydro-distilled oil of C. limon contained geranial (30.08%), limonene (27.09%), and neral (22.87%) in the identified peaks (96.67%). The identified components of C. clementina leaves oil (68.54%) showed twenty-six compounds, where the predominant compound was geranial (42.40%), followed by neral (26.79%) and limonene (14.48%). However, 89.82% C. sinensis oil was identified, where the major peaks were for neral (27.52%), linalool (25.83%), and geranial (23.44%). HD oil of lemon showed the highest activity against L. major, with moderate toxicity on murine macrophage (RAW 264.7) cells, and possessed the best selectivity index on both Leishmanial species (SI: 3.68; 6.38), followed by C. clementina oil and C. limon using SFME (0.9 ± 0.29, 1.03 ± 0.27, and 1.13 ± 0.3), respectively. C. clementina oil induced the greatest activity on Leishmania infantum, followed by HD lemon and SFME lemon oils (0.32 ± 0.18, 0.52 ± 0.15, and 0.57 ± 0.09, respectively) when compared to Amphotericin B (0.80 ± 0.18 and 0.23 ± 0.13) as a positive control, on both species, respectively. Our study suggests a potent anti-leishmanial activity of lemon oil (HD) on L. major, followed by C. clementina. With the same potency on L. infantum shown by C. clementina oil, followed by HD lemon oil. This effect could be attributed to the major compounds of limonene, citral, and neral, as well as the synergistic effect of other different compounds. These observations could be a starting point for the building of new anti-leishmanial drugs from natural origins, and which combine different EOs containing Citrus cultivars

    Pancreatic Pathological Changes in Murine Toxoplasmosis and Possible Association with Diabetes Mellitus

    No full text
    Background: Previous studies have reported involvement of Toxoplasma gondii (T. gondii) infections in the pathogenesis of some autoimmune diseases, such as polymyositis, rheumatoid arthritis, autoimmune thyroiditis, and Crohn’s disease. However, data on the association between T. gondii infections and Type 1 diabetes mellitus (T1DM) are still controversial. Therefore, in the present study, we aimed to investigate the pancreatic pathological changes in mouse models with acute and chronic toxoplasmosis and their association with T1DM. Materials and Methods: Three groups (10 mice each) of male Swiss Albino mice were used. One group of mice was left uninfected, whereas the second and third groups were infected with the acute virulent T. gondii RH strain and the chronic less virulent Me49 T. gondii strain, respectively. T. gondii-induced pancreatic pathological changes were evaluated by histopathological examination of pancreatic tissues. Moreover, the expression of insulin, levels of caspase-3, and the pancreatic infiltration of CD8+ T cells were evaluated using immunohistochemical staining. Results: Pancreatic tissues of T. gondii-infected animals showed significant pathological alterations and variable degrees of insulitis. Mice with acute toxoplasmosis exhibited marked enlargement and reduced numbers of islets of Langerhans. However, mice with chronic toxoplasmosis showed considerable reduction in size and number of islets of Langerhans. Moreover, insulin staining revealed significant reduction in β cell numbers, whereas caspase-3 staining showed induced apoptosis in islets of Langerhans of acute toxoplasmosis and chronic toxoplasmosis mice compared to uninfected mice. We detected infiltration of CD8+ T cells only in islets of Langerhans of mice with chronic toxoplasmosis. Conclusions: Acute and chronic toxoplasmosis mice displayed marked pancreatic pathological changes with reduced numbers of islets of Langerhans and insulin-producing-β cells. Since damage of β cells of islets of Langerhans is associated with the development of T1DM, our findings may support a link between T. gondii infections and the development of T1DM

    Zinc oxide nanoparticles produced by Zingiber officinale ameliorates acute toxoplasmosis-induced pathological and biochemical alterations and reduced parasite burden in mice model.

    No full text
    BackgroundAlthough, approximately 30% of the world's population is estimated to be infected with Toxoplasma gondii (T. gondii) with serious manifestations in immunocompromised patients and pregnant females, the available treatment options for toxoplasmosis are limited with serious side effects. Therefore, it is of great importance to identify novel potent, well tolerated candidates for treatment of toxoplasmosis. The present study aimed to evaluate the effect of Zinc oxide nanoparticles (ZnO NPs) synthesized using Zingiber officinale against acute toxoplasmosis in experimentally infected mice.MethodsThe ethanolic extract of ginger was used to prepare ZnO NPs. The produced ZnO NPs were characterized in terms of structure and morphology using Fourier Transformed Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), UV- spectroscopy and scanning electron microscopy (SEM). The prepared formula was used in treatment of T. gondii RH virulent strain. Forty animals were divided into four groups, with ten mice per group. The first group was the uninfected, control group. The second group was infected but untreated. The third and the fourth groups received ZnO NPs and Spiramycin orally in a dose of 10 mg/kg and 200 mg/kg/day respectively. The effect of the used formulas on the animals survival rate, parasite burden, liver enzymes -including Alanine transaminase (ALT) and aspartate transaminase (AST)-, nitric oxide (NO) and Catalase antioxidant enzyme (CAT) activity was measured. Moreover, the effect of treatment on histopathological alterations associated with toxoplasmosis was examined.ResultsMice treated with ZnO NPs showed the longest survival time with significant reduction in the parasite load in the livers and peritoneal fluids of the same group. Moreover, ZnO NPs treatment was associated with a significant reduction in the level of liver enzymes (ALT, AST) and NO and a significant increase in the antioxidant activity of CAT enzyme. SEM examination of tachyzoites from the peritoneal fluid showed marked distortion of T. gondii tachyzoites isolated from mice treated with ZnO NPs in comparison to untreated group. T. gondii induced histopathological alterations in the liver and brain were reversed by ZnO NPs treatment with restoration of normal tissue morphology.ConclusionThe produced formula showed a good therapeutic potential in treatment of murine toxoplasmosis as demonstrated by prolonged survival rate, reduced parasite burden, improved T. gondii associated liver injury and histopathological alterations. Thus, we assume that the protective effect observed in the current research is attributed to the antioxidant capability of NPs. Based on the results obtained from the current work, we suggest greenly produced ZnO NPs as a chemotherapeutic agent with good therapeutic potential and high levels of safety in the treatment of toxoplasmosis

    Bioinformatics and immunoinformatics assisted multiepitope vaccine construct against Burkholderia anthina

    No full text
    Burkholderia anthina is a pathogenic bacterial species belonging to the Burkholderiaceae family and it is mainly considered the etiological agent of chronic obstructive pulmonary diseases associated with cystic fibrosis, due to being intrinsic antibiotic resistant making it difficult to treat pulmonary infections. Hence increased rate of antibiotic-resistant bacterial species vaccine development is the priority to tackle this problem. In research work, we designed a multi-epitope-based vaccine construct against B. anthina using reverse vaccinology immunoinformatics and biophysical approaches. Based on the subtractive proteomic screening of core proteins we identified 3 probable antigenic proteins and good vaccine targets namely, type VI secretion system tube protein hcp Burkholderia, fimbria/pilus periplasmic chaperone and fimbrial biogenesis outer membrane usher protein. The selected 3 proteins were used for B and B cells B-derived T-cell epitopes prediction. In epitopes prediction, different epitopes were predicted with various lengths and percentile scores and subjected to further immunoinformatics analysis. In immunoinformatics screening a total number of 06, IDDGNANAL, KTVKPDPRY, SEVESGSAP, YGGDLTVEV, SVSHDTNGR, and GSKADGYQR epitopes were considered good vaccine target candidates and shortlisted for vaccine construct designing. The vaccine construct was designed by joining selected epitopes with the help of a GPGPG linker and additionally linked with cholera toxin b subunit adjuvant to increase the efficacy of the vaccine construct the sequence of the said adjuvant were retrieved from protein data bank through its (PDB ID: 5ELD). The designed vaccine construct was evaluated for its physiochemical properties analysis in which we reported that the vaccine construct comprises 216 amino acids with a molecular weight of 22.37499 kilo Dalton, 15.55 instability index (II) is computed, and this classifies that the vaccine construct is properly stable. VaxiJen v2.0 web server predicted that the vaccine construct is probable antigenic in nature with 0.6320 predicted value. Furthermore AllerTOP v. 2.0 tool predicted that the designed vaccine construct is non allergic in nature. Molecular docking analysis was done for analysis of the binding affinity of the vaccine construct with TLR-2 (PDB ID: 6NIG), the docking results predicted 799.2 kcal/mol binding energy score that represents the vaccine construct has a good binding ability with TLR-2. Moreover, molecular dynamic simulation analysis results revealed that the vaccine construct and immune cell receptor has proper binding stability over various environmental condition, i.e. change in pressure range, temperature, and motion. After each analysis, we observed that the vaccine construct is safe stable, and probably antigenic and could generate an immune response against the target pathogen but in the future, experimental analysis is still needed to verify in silico base results

    Discovery of putative inhibitors against main drivers of SARS-CoV-2 infection: Insight from quantum mechanical evaluation and molecular modeling

    No full text
    International audienceSARS-CoV-2 triggered a worldwide medical crisis, affecting the world’s social, emotional, physical, and economic equilibrium. However, treatment choices and targets for finding a solution to COVID-19’s threat are becoming limited. A viable approach to combating the threat of COVID-19 is by unraveling newer pharmacological and therapeutic targets pertinent in the viral survival and adaptive mechanisms within the host biological milieu which in turn provides the opportunity to discover promising inhibitors against COVID-19. Therefore, using high-throughput virtual screening, manually curated compounds library from some medicinal plants were screened against four main drivers of SARS-CoV-2 (spike glycoprotein, PLpro, 3CLpro, and RdRp). In addition, molecular docking, Prime MM/GBSA (molecular mechanics/generalized Born surface area) analysis, molecular dynamics (MD) simulation, and drug-likeness screening were performed to identify potential phytodrugs candidates for COVID-19 treatment. In support of these approaches, we used a series of computational modeling approaches to develop therapeutic agents against COVID-19. Out of the screened compounds against the selected SARS-CoV-2 therapeutic targets, only compounds with no violations of Lipinski’s rule of five and high binding affinity were considered as potential anti-COVID-19 drugs. However, lonchocarpol A, diplacol, and broussonol E (lead compounds) were recorded as the best compounds that satisfied this requirement, and they demonstrated their highest binding affinity against 3CLpro. Therefore, the 3CLpro target and the three lead compounds were selected for further analysis. Through protein–ligand mapping and interaction profiling, the three lead compounds formed essential interactions such as hydrogen bonds and hydrophobic interactions with amino acid residues at the binding pocket of 3CLpro. The key amino acid residues at the 3CLpro active site participating in the hydrophobic and polar inter/intra molecular interaction were TYR54, PRO52, CYS44, MET49, MET165, CYS145, HIS41, THR26, THR25, GLN189, and THR190. The compounds demonstrated stable protein–ligand complexes in the active site of the target (3CLpro) over a 100 ns simulation period with stable protein–ligand trajectories. Drug-likeness screening shows that the compounds are druggable molecules, and the toxicity descriptors established that the compounds demonstrated a good biosafety profile. Furthermore, the compounds were chemically reactive with promising molecular electron potential properties. Collectively, we propose that the discovered lead compounds may open the way for establishing phytodrugs to manage COVID-19 pandemics and new chemical libraries to prevent COVID-19 entry into the host based on the findings of this computational investigation
    corecore