224 research outputs found

    Further Characterization of Dopamine Release by Permeabilized PC 12 Cells

    Get PDF
    Rat pheochromocytoma cells (PC 12) permeabilized with staphylococcal α-toxin release [3H]dopamine after addition of micromolar Ca2+. This does not require additional Mg2+-ATP (in contrast to bovine adrenal medullary chromaffin cells). We also observed Ca2+-dependent [3H]-dopamine release from digitonin-permeabilized PC 12 cells. Permeabilization with α-toxin or digitonin and stimulation of the cells were done consecutively to wash out endogenous Mg2+-ATP. During permeabilization, ATP was removed effectively from the cytoplasm by both agents but the cells released [3H]dopamine in response to micromolar Ca2+ alone. Replacement by chloride of glutamate, which could sustain mitochondrial ATP production in permeabilized cells, does not significantly alter catecholamine release induced by Ca2+. However, Mg2+ without ATP augments the Ca2+-induced release. The release was unaltered by thiol-, hydroxyl-, or calmodulin-interfering substances. Thus Mg2+-ATP, calmodulin, or proteins containing -SH or -OH groups are not necessary for exocytosis in permeabilized PC 12 cells

    Two-year follow-up of Helicobacter pylori infection in C57BL/6 and Balb/cA mice

    Get PDF
    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. We previously found high-grade lymphoma after 13 months' H. pylori infection in C57BL/6 mice. In this study we followed H. pylori infection by three different isolates in C57BL/6 and Balb/cA mice for 23 months. Six-week-old C57BL/6 and Balb/cA mice were infected with H. pylori strains 119p (CagA+, VacA+), SS1 (CagA+, VacA+) and G50 (CagA-, VacA-). Mice were followed at 2 weeks, 10 weeks and 23 months post-inoculation (p.i.) by culture, histopathology and serology. Strain G50 was only reisolated from mice 2 weeks p.i. There was no difference in colonization between strain 119p and SS1 at 10 weeks p.i., whereas SS1 gave 100% colonization versus 119p gave 50% 23 months p.i.. Interestingly, the inflammation score was higher in mice infected with strain 119p than with SS1 10-week p.i., and there were lymphoepithelial lesions in mice infected with strain 119p and G50 but not with SS1 at 23 months post-infection. Eight mice infected with strains 119p and G50 developed gastric lymphoma (grade 5 and 4). One C57BL/6 mouse infected with strain 119p developed hepatocellular carcinoma after 23 months. Immunoblot showed specific bands of 2633 kDa against H. pylori in infected mice, and two mice infected with strain SSI reacted with antibodies to the 120 kDa CagA toxin. Conclusion: A reproducible animal model for H. pylori-induced lymphoma and possibly hepatocellular carcinoma is described. Strain diversity may lead to different outcomes of H. pylori infection

    Modulating Activity of Vancomycin and Daptomycin on the Expression of Autolysis Cell-Wall Turnover and Membrane Charge Genes in hVISA and VISA Strains

    Get PDF
    Glycopeptides are still the gold standard to treat MRSA (Methicillin Resistant Staphylococcus aureus) infections, but their widespread use has led to vancomycin-reduced susceptibility [heterogeneous Vancomycin-Intermediate-Staphylococcus aureus (hVISA) and Vancomycin-Intermediate-Staphylococcus aureus (VISA)], in which different genetic loci (regulatory, autolytic, cell-wall turnover and cell-envelope positive charge genes) are involved. In addition, reduced susceptibility to vancomycin can influence the development of resistance to daptomycin. Although the phenotypic and molecular changes of hVISA/VISA have been the focus of different papers, the molecular mechanisms responsible for these different phenotypes and for the vancomycin and daptomycin cross-resistance are not clearly understood. The aim of our study was to investigate, by real time RT-PCR, the relative quantitative expression of genes involved in autolysis (atl-lytM), cell-wall turnover (sceD), membrane charges (mprF-dltA) and regulatory mechanisms (agr-locus-graRS-walKR), in hVISA and VISA cultured with or without vancomycin and daptomycin, in order to better understand the molecular basis of vancomycin-reduced susceptibility and the modulating activity of vancomycin and daptomycin on the expression of genes implicated in their reduced susceptibility mechanisms. Our results show that hVISA and VISA present common features that distinguish them from Vancomycin-Susceptible Staphylococcus aureus (VSSA), responsible for the intermediate glycopeptide resistance i.e. an increased cell-wall turnover, an increased positive cell-wall charge responsible for a repulsion mechanism towards vancomycin and daptomycin, and reduced agr-functionality. Indeed, VISA emerges from hVISA when VISA acquires a reduced autolysis caused by a down-regulation of autolysin genes, atl/lytM, and a reduction of the net negative cell-envelope charge via dltA over-expression. Vancomycin and daptomycin, acting in a similar manner in hVISA and VISA, can influence their cross-resistance mechanisms promoting VISA behavior in hVISA and enhancing the cell-wall pathways responsible for the intermediate vancomycin resistance in VISA. Daptomycin can also induce a charge repulsion mechanism both in hVISA and VISA increasing the activity of the mprF

    A Structure-Based Approach for Mapping Adverse Drug Reactions to the Perturbation of Underlying Biological Pathways

    Get PDF
    Adverse drug reactions (ADR), also known as side-effects, are complex undesired physiologic phenomena observed secondary to the administration of pharmaceuticals. Several phenomena underlie the emergence of each ADR; however, a dominant factor is the drug's ability to modulate one or more biological pathways. Understanding the biological processes behind the occurrence of ADRs would lead to the development of safer and more effective drugs. At present, no method exists to discover these ADR-pathway associations. In this paper we introduce a computational framework for identifying a subset of these associations based on the assumption that drugs capable of modulating the same pathway may induce similar ADRs. Our model exploits multiple information resources. First, we utilize a publicly available dataset pairing drugs with their observed ADRs. Second, we identify putative protein targets for each drug using the protein structure database and in-silico virtual docking. Third, we label each protein target with its known involvement in one or more biological pathways. Finally, the relationships among these information sources are mined using multiple stages of logistic-regression while controlling for over-fitting and multiple-hypothesis testing. As proof-of-concept, we examined a dataset of 506 ADRs, 730 drugs, and 830 human protein targets. Our method yielded 185 ADR-pathway associations of which 45 were selected to undergo a manual literature review. We found 32 associations to be supported by the scientific literature

    Cationic polyelectrolytes: A new look at their possible roles as opsonins, as stimulators of respiratory burst in leukocytes, in bacteriolysis, and as modulators of immune-complex diseases (A review hypothesis)

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44497/1/10753_2004_Article_BF00915991.pd
    • …
    corecore