31 research outputs found

    Ultrafast Thermalization Pathways of Excited Bulk and Surface States in the Ferroelectric Rashba Semiconductor GeTe

    Get PDF
    A large Rashba effect is essential for future applications in spintronics. Particularly attractive is understanding and controlling nonequilibrium properties of ferroelectric Rashba semiconductors. Here, time and angle resolved photoemission is utilized to access the ultrafast dynamics of bulk and surface transient Rashba states after femtosecond optical excitation of GeTe. A complex thermalization pathway is observed, wherein three different timescales can be clearly distinguished intraband thermalization, interband equilibration, and electronic cooling. These dynamics exhibit an unconventional temperature dependence while the cooling phase speeds up with increasing sample temperature, the opposite happens for interband thermalization. It is demonstrated how, due to the Rashba effect, an interdependence of these timescales on the relative strength of both electron electron and electron phonon interactions is responsible for the counterintuitive temperature dependence, with spin selection constrained interband electron electron scatterings found both to dominate dynamics away from the Fermi level, and to weaken with increasing temperature. These findings are supported by theoretical calculations within the Boltzmann approach explicitly showing the opposite behavior of all relevant electron electron and electron phonon scattering channels with temperature, thus confirming the microscopic mechanism of the experimental findings. The present results are important for future applications of ferroelectric Rashba semiconductors and their excitations in ultrafast spintronic

    Mouse Sphingosine Kinase 1a Is Negatively Regulated through Conventional PKC-Dependent Phosphorylation at S373 Residue

    Get PDF
    Sphingosine kinase is a lipid kinase that converts sphingosine into sphingosine-1-phosphate, an important signaling molecule with intracellular and extracellular functions. Although diverse extracellular stimuli influence cellular sphingosine kinase activity, the molecular mechanisms underlying its regulation remain to be clarified. In this study, we investigated the phosphorylation-dependent regulation of mouse sphingosine kinase (mSK) isoforms 1 and 2. mSK1a was robustly phosphorylated in response to extracellular stimuli such as phorbol ester, whereas mSK2 exhibited a high basal level of phosphorylation in quiescent cells regardless of agonist stimulation. Interestingly, phorbol ester-induced phosphorylation of mSK1a correlated with suppression of its activity. Chemical inhibition of conventional PKCs (cPKCs) abolished mSK1a phosphorylation, while overexpression of PKC alpha, a cPKC isoform, potentiated the phosphorylation, in response to phorbol ester. Furthermore, an in vitro kinase assay showed that PKC alpha directly phosphorylated mSK1a. In addition, phosphopeptide mapping analysis determined that the S373 residue of mSK1a was the only site phosphorylated by cPKC. Interestingly, alanine substitution of S373 made mSK1a refractory to the inhibitory effect of phorbol esters, whereas glutamate substitution of the same residue resulted in a significant reduction in mSK1a activity, suggesting the significant role of this phosphorylation event. Taken together, we propose that mSK1a is negatively regulated through cPKC-dependent phosphorylation at S373 residueopen

    Targeting Huntington’s disease through histone deacetylases

    Get PDF
    Huntington’s disease (HD) is a debilitating neurodegenerative condition with significant burdens on both patient and healthcare costs. Despite extensive research, treatment options for patients with this condition remain limited. Aberrant post-translational modification (PTM) of proteins is emerging as an important element in the pathogenesis of HD. These PTMs include acetylation, phosphorylation, methylation, sumoylation and ubiquitination. Several families of proteins are involved with the regulation of these PTMs. In this review, I discuss the current evidence linking aberrant PTMs and/or aberrant regulation of the cellular machinery regulating these PTMs to HD pathogenesis. Finally, I discuss the evidence suggesting that pharmacologically targeting one of these protein families the histone deacetylases may be of potential therapeutic benefit in the treatment of HD

    Thermal behaviour of glycidyl methacrylate homopolymers and copolymers

    No full text
    The paper describes the effect of molecular mass and copolymer composition on thermal behaviour of homopolymers and copolymers of glycidyl methacrylate and methyl methacrylate. The polymerisation was done by using group transfer polymerization (GTP) and free radical techniques. A multistep decomposition was observed in polymers prepared by free radical technique indicating the presence of weak linkages in the backbone. Copolymers prepared by GTP had fewer weak sites and degraded in single step by a random chain scission

    Vitrimers based on bio-derived chemicals: Overview and future prospects

    No full text
    The perspective of using recyclable and biobased materials in the vitrimeric concept is attractive, in view of the regulatory guidelines and pressing need to reduce CO2-emissions. The expansion of viable bio-based polymeric materials is gaining increased attention to achieve sustainable development goals. Although durability, cost, and performance still limit their real life applications, these limitations can be overcome through state-of-the-art bio-vitrimeric materials displaying thermoset like mechanical and thermal properties as well as thermoplastic like malleable and thus recyclable properties. Bio-derived chemicals based vitrimers can be of advantage, where material design is made from scratch, allowing to plan material properties in line with their future life cycle from the very beginning. This article emphasizes the current needs of vitrimers based on bio-derived chemicals, including their recycling, reprocessing, and self-healing properties, along with their advantages and potential obstacles from todays’ perspective. The article also identifies potential bio-derivatives as attractive building blocks for vitrimers because of their potential for sustainability
    corecore