11,086 research outputs found

    Casimir effect in rugby-ball type flux compactifications

    Get PDF
    As a continuation of the work in \cite{mns}, we discuss the Casimir effect for a massless bulk scalar field in a 4D toy model of a 6D warped flux compactification model,to stabilize the volume modulus. The one-loop effective potential for the volume modulus has a form similar to the Coleman-Weinberg potential. The stability of the volume modulus against quantum corrections is related to an appropriate heat kernel coefficient. However, to make any physical predictions after volume stabilization, knowledge of the derivative of the zeta function, ζ(0)\zeta'(0) (in a conformally related spacetime) is also required. By adding up the exact mass spectrum using zeta function regularization, we present a revised analysis of the effective potential. Finally, we discuss some physical implications, especially concerning the degree of the hierarchy between the fundamental energy scales on the branes. For a larger degree of warping our new results are very similar to the previous ones \cite{mns} and imply a larger hierarchy. In the non-warped (rugby-ball) limit the ratio tends to converge to the same value, independently of the bulk dilaton coupling.Comment: 13 pages, 6 figures, accepted for publication in PR

    HD66051: the first eclipsing binary hosting an early-type magnetic star

    Full text link
    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd600B_{\rm d}\approx600 G and an inclination with respect to the rotation axis of βd=13o\beta_{\rm d}=13^{\rm o}. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 MM_\odot) and radii (2.78 and 1.39 RR_\odot) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.Comment: 14 pages, 15 figures; accepted for publication in MNRA

    Roadmap on the theoretical work of BinaMIcS

    Full text link
    We review the different theoretical challenges concerning magnetism in interacting binary or multiple stars that will be studied in the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) project during the corresponding spectropolarimetric Large Programs at CFHT and TBL. We describe how completely new and innovative topics will be studied with BinaMIcS such as the complex interactions between tidal flows and stellar magnetic fields, the MHD star-star interactions, and the role of stellar magnetism in stellar formation and vice versa. This will strongly modify our vision of the evolution of interacting binary and multiple stars.Comment: 2 pages, proceeding of IAUS 302 Magnetic fields throughout stellar evolution, correct list of author

    Magnetic fields, winds and X-rays of the massive stars in the Orion Nebula Cluster

    Full text link
    In some massive stars, magnetic fields are thought to confine the outflowing radiatively-driven wind. Although theoretical models and MHD simulations are able to illustrate the dynamics of such a magnetized wind, the impact of this wind-field interaction on the observable properties of a magnetic star - X-ray emission, photometric and spectral variability - is still unclear. The aim of this study is to examine the relationship between magnetism, stellar winds and X-ray emission of OB stars, by providing empirical observations and confronting theory. In conjunction with the COUP survey of the Orion Nebula Cluster, we carried out spectropolarimatric ESPaDOnS observations to determine the magnetic properties of massive OB stars of this cluster.Comment: Proceedings of IAUS272: Active OB star
    corecore