707 research outputs found

    Immunohistochemical study of morphology and distribution of CD163+ve macrophages in the normal adult equine gastrointestinal tract

    Get PDF
    Intestinal macrophages are the largest group of mononuclear phagocytes in the body and play a role in intestinal innate immunity, neuroimmune interactions and maintaining intestinal homeostasis. Conversely, they also are implicated in numerous pathologies of the gastrointestinal tract, such as postoperative ileus and inflammatory bowel disease. As a result, macrophages could be potential therapeutic targets. To date, there are limited studies on the morphology and distribution of macrophages in the equine gastrointestinal tract (GIT). The aim of this study was to identify the location and abundance of resident macrophages in the equine GIT using CD163 as an immunohistochemical marker. Tissue samples were obtained post-mortem from 14 sites along the gastrointestinal tracts of 10 horses free from gastrointestinal disease; sample sites extended from the stomach to the small colon. CD163 cells were present in all regions of the equine GIT from stomach to small colon. CD163 cells were also identified in all tissue layers of the intestinal wall, namely, mucosa, submucosa, muscularis externa (ME), myenteric plexus and serosa. Consistent with a proposed function in regulation of intestinal motility, CD163 cells were regularly distributed within the ME, with accumulations closely associated with the myenteric plexus and effector cells such as neurons and the interstitial cells of Cajal (ICC)

    Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila

    Get PDF
    Dopaminergic neurons provide reward learning signals in mammals and insects [1-4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the beta\u272 and gamma4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the gamma5b regions, and it can be artificially reinforced by those projecting to the beta lobe and adjacent alpha1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population

    Square or Sine: Finding a Waveform with High Success Rate of Eliciting SSVEP

    Get PDF
    Steady state visual evoked potential (SSVEP) is the brain's natural electrical potential response for visual stimuli at specific frequencies. Using a visual stimulus flashing at some given frequency will entrain the SSVEP at the same frequency, thereby allowing determination of the subject's visual focus. The faster an SSVEP is identified, the higher information transmission rate the system achieves. Thus, an effective stimulus, defined as one with high success rate of eliciting SSVEP and high signal-noise ratio, is desired. Also, researchers observed that harmonic frequencies often appear in the SSVEP at a reduced magnitude. Are the harmonics in the SSVEP elicited by the fundamental stimulating frequency or by the artifacts of the stimuli? In this paper, we compare the SSVEP responses of three periodic stimuli: square wave (with different duty cycles), triangle wave, and sine wave to find an effective stimulus. We also demonstrate the connection between the strength of the harmonics in SSVEP and the type of stimulus

    Multisensory learning binds neurons into a cross-modal memory engram

    Get PDF
    Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously ‘modality-selective’ KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience

    Memory-Relevant Mushroom Body Output Synapses Are Cholinergic

    Get PDF
    Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses

    Determination of nitroaromatic and nitramine explosives from a PTFE wipe using thermal desorption-gas chromatography with electron-capture detection

    Get PDF
    Abstract A method for the detection of nitroaromatic and nitramine explosives from a PTFE wipe has been developed using thermal desorption and gas chromatography with electron-capture detection (TD-GC-ECD). For method development a standard mixture containing eight nitroaromatic and two nitramine (HMX and RDX) explosive compounds was spiked onto a PTFE wipe. Explosives were desorbed from the wipe in a commercial thermal desorption system and trapped onto a cooled injection system, which was incorporated into the injection port of the GC. A dual column, dual ECD configuration was adopted to enable simultaneous confirmation analysis of the explosives desorbed. For the desorption of 50 ng of each explosive, desorption efficiencies ranged between 80.0 and 117%, for both columns. Linearity over the range 2.5-50 ng was demonstrated for each explosive on both columns with r 2 values ranging from 0.979 to 0.991 and limits of detection less than 4 ng. Desorption of HMX from a PTFE wipe has also been demonstrated for the first time, albeit at relatively high loadings (100 ng)

    Hypoxia during maintenance hemodialysis; the critical role of pH

    Get PDF
    Background The impact and management of subclinical hypoxia during hemodialysis is a significant medical challenge. As key determinants of O2 availability and delivery, proposed mechanisms contributing to hypoxia include ischemia, alkalemia and pulmonary leukocyte sequestration. However, no study has comprehensively investigated and compared these interrelated mechanisms throughout a typical hemodialysis treatment week. This study aimed to comprehensively assess the physiological mechanisms that contribute to hypoxia during hemodialysis. Methods In 76 patients, we measured arterial blood gases and pH at four time-points during hemodialysis (start, 15 min, 60 min, end) over the course of a standard treatment week. For the mid-week hemodialysis session, we additionally measured central hemodynamics (non-invasive cardiac output monitoring) and white blood cell count. Results Linear regression modelling identified changes in pH, but not central hemodynamics or white blood cell count, to be predictive of changes in PaO2 throughout hemodialysis (e.g. at 60 min, β standardized coefficient pH = 0.45, model R2 = 0.25, P < .001). Alkalemia, hypokalemia, decreased calcium and increased hemoglobin–O2 affinity (leftward shift in the oxyhemoglobin dissociation curve) were evident at the end of hemodialysis. pH and hemoglobin–O2 affinity at the start of hemodialysis increased incrementally over the course of a standard treatment week. Conclusion These data highlight the important role of pH in regulating O2 availability and delivery during hemodialysis. Findings support routine pH monitoring and personalized dialysate bicarbonate prescription to mitigate the significant risk of alkalemia and subclinical hypoxia

    Pheromonal and Behavioral Cues Trigger Male-to-Female Aggression in Drosophila

    Get PDF
    By genetically manipulating both pheromonal profiles and behavioral patterns, we find that Drosophila males showed a complete reversal in their patterns of aggression towards other males and female
    corecore