72 research outputs found

    Development and optimization of a "water window" microscope based on a gas-puff target laser-produced plasma source

    Get PDF
    A laser-plasma double stream gas-puff target source coupled with Fresnel zone plate (FZP) optics, operating at He-like nitrogen spectral line λ=2.88nm, is capable of acquire complementary information in respect to optical and electron microscopy, allowing to obtain high resolution imaging, compared to the traditional visible light microscopes, with an exposition time of a few seconds. The compact size and versatility of the microscope offers the possibility to perform imaging experiments in the university laboratories, previously restricted to large-scale photon facilities. Source and microscope optimization, and examples of applications will be presented and discussed

    A desktop extreme ultraviolet microscope based on a compact laser-plasma light source

    Get PDF
    A compact, desktop size microscope, based on laser-plasma source and equipped with reflective condenser and diffractive Fresnel zone plate objective, operating in the extreme ultraviolet (EUV) region at the wavelength of 13.8 nm, was developed. The microscope is capable of capturing magnified images of objects with 95-nm full-pitch spatial resolution (48 nm 25–75% KE) and exposure time as low as a few seconds, combining reasonable acquisition conditions with stand-alone desktop footprint. Such EUV microscope can be regarded as a complementary imaging tool to already existing, well-established ones. Details about the microscope, characterization, resolution estimation and real sample images are presented and discussed

    Nanoimaging using soft X-ray and EUV laser-plasma sources

    Get PDF
    In this work we present three experimental, compact desk-top imaging systems: SXR and EUV full field microscopes and the SXR contact microscope. The systems are based on laser-plasma EUV and SXR sources based on a double stream gas puff target. The EUV and SXR full field microscopes, operating at 13.8 nm and 2.88 nm wavelengths are capable of imaging nanostructures with a sub-50 nm spatial resolution and short (seconds) exposure times. The SXR contact microscope operates in the "water-window" spectral range and produces an imprint of the internal structure of the imaged sample in a thin layer of SXR sensitive photoresist. Applications of such desk-top EUV and SXR microscopes, mostly for biological samples (CT26 fibroblast cells and Keratinocytes) are also presented. Details about the sources, the microscopes as well as the imaging results for various objects will be presented and discussed. The development of such compact imaging systems may be important to the new research related to biological, material science and nanotechnology applications

    Volume extreme ultraviolet holographic imaging with numerical optical sectioning

    Get PDF
    Includes bibliographical references (pages 10622-10623).Three dimensional images were obtained using a single high numerical aperture hologram recorded in a high resolution photoresist with a table top λ = 46.9 nm laser. Gabor holograms were numerically reconstructed over a range of image planes by sweeping the propagation distance in the numerical reconstruction algorithm, allowing numerical optical sectioning. A robust three dimension image of a test object was obtained with numerical optical sectioning, providing a longitudinal resolution of approximately 2 μm and a lateral resolution of 164 nm

    Sub 400 nm spatial resolution extreme ultraviolet holography with a table top laser

    Get PDF
    Includes bibliographical references (pages 9636-9637).We report sub-400 nm spatial resolution with Gabor holography obtained using a highly coherent table top 46.9 nm laser. The hologram was recorded in high resolution photoresist and subsequently digitized with an atomic force microscope. The final image was numerically reconstructed with a Fresnel propagator. Optimal reconstruction parameters and quantification of spatial resolution were obtained with a wavelet analysis and image correlation

    Laser-produced plasma EUV source based on tin-rich, thin-layer targets

    Get PDF
    In this paper a new approach to a laser-produced plasma EUV source based on a tin target is presented. A thin layer of pure tin and composite layers consisting of Sn with Si, SiO and LiF are investigated. The target composed of several thin layers produces less debris than the other targets and provides a conversion efficiency (CE) in the 13.5-nm +/- 1% band at least comparable to the CE for the pure tin slab target. The largest CE was observed for the target composed of a mixture of Sn and LiF, due to the fact that lithium, similarly to tin, is a strong emitter at 13.5 nm

    Bioimaging using full field and contact EUV and SXR microscopes with nanometer spatial resolution

    Get PDF
    We present our recent results, related to nanoscale imaging in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral ranges and demonstrate three novel imaging systems recently developed for the purpose of obtaining high spatial resolution images of nanoscale objects with the EUV and SXR radiations. All the systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes—operating at 13.8 nm and 2.88 nm wavelengths, respectively—are currently capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The third system is a SXR contact microscope, operating in the “water-window” spectral range (2.3–4.4 nm wavelength), to produce an imprint of the internal structure of the investigated object in a thin surface layer of SXR light sensitive poly(methyl methacrylate) photoresist. The development of such compact imaging systems is essential to the new research related to biological science, material science, and nanotechnology applications in the near future. Applications of all the microscopes for studies of biological samples including carcinoma cells, diatoms, and neurons are presented. Details about the sources, the microscopes, as well as the imaging results for various objects will be shown and discussed

    Bioimaging using full field and contact EUV and SXR microscopes with nanometer spatial resolution

    Get PDF
    We present our recent results, related to nanoscale imaging in the extreme ultraviolet (EUV) and soft X-ray (SXR) spectral ranges and demonstrate three novel imaging systems recently developed for the purpose of obtaining high spatial resolution images of nanoscale objects with the EUV and SXR radiations. All the systems are based on laser-plasma EUV and SXR sources, employing a double stream gas puff target. The EUV and SXR full field microscopes-operating at 13.8 nm and 2.88 nm wavelengths, respectively-are currently capable of imaging nanostructures with a sub-50 nm spatial resolution with relatively short (seconds) exposure times. The third system is a SXR contact microscope, operating in the "water-window" spectral range (2.3-4.4 nm wavelength), to produce an imprint of the internal structure of the investigated object in a thin surface layer of SXR light sensitive poly(methyl methacrylate) photoresist. The development of such compact imaging systems is essential to the new research related to biological science, material science, and nanotechnology applications in the near future. Applications of all the microscopes for studies of biological samples including carcinoma cells, diatoms, and neurons are presented. Details about the sources, the microscopes, as well as the imaging results for various objects will be shown and discussed
    corecore