1,155 research outputs found

    Hole crystallization in semiconductors

    Full text link
    When electrons in a solid are excited to a higher energy band they leave behind a vacancy (hole) in the original band which behaves like a positively charged particle. Here we predict that holes can spontaneously order into a regular lattice in semiconductors with sufficiently flat valence bands. The critical hole to electron effective mass ratio required for this phase transition is found to be of the order of 80.Comment: accepted for publication in J. Phys. A: Math. Ge

    Stability of a magnetically levitated nanomagnet in vacuum: Effects of gas and magnetization damping

    Get PDF
    In the absence of dissipation a non-rotating magnetic nanoparticle can be stably levitated in a static magnetic field as a consequence of the spin origin of its magnetization. Here we study the effects of dissipation on the stability of the system, considering the interaction with the background gas and the intrinsic Gilbert damping of magnetization dynamics. At large applied magnetic fields we identify magnetization switching induced by Gilbert damping as the key limiting factor for stable levitation. At low applied magnetic fields and for small particle dimensions magnetization switching is prevented due to the strong coupling of rotation and magnetization dynamics, and the stability is mainly limited by the gas-induced dissipation. In the latter case, high vacuum should be sufficient to extend stable levitation over experimentally relevant timescales. Our results demonstrate the possibility to experimentally observe the phenomenon of quantum spin stabilized magnetic levitation.Comment: 13 pages, 6 figures, revised versio

    Reentrant valence transition in EuO at high pressures: beyond the bond-valence model

    Full text link
    The pressure-dependent relation between Eu valence and lattice structure in model compound EuO is studied with synchrotron-based x-ray spectroscopic and diffraction techniques. Contrary to expectation, a 7% volume collapse at \approx 45 GPa is accompanied by a reentrant Eu valence transition into a \emph{lower} valence state. In addition to highlighting the need for probing both structure and electronic states directly when valence information is sought in mixed-valent systems, the results also show that widely used bond-valence methods fail to quantitatively describe the complex electronic valence behavior of EuO under pressure.Comment: 5 pages, 4 figure

    Preprint arXiv: 2106.14858 Submitted on 28 Jun 2021

    Get PDF
    In the absence of dissipation a non-rotating magnetic nanoparticle can be stably levitated in a static magnetic field as a consequence of the spin origin of its magnetization. Here, we study the effects of dissipation on the stability of the system, considering the interaction with the background gas and the intrinsic Gilbert damping of magnetization dynamics. We find that dissipation limits the time over which a particle can be stably levitated. At large applied magnetic fields we identify magnetization switching induced by Gilbert damping as the key limiting factor for stable levitation. At low applied magnetic fields and for small particle dimensions magnetization switching is prevented due to the strong coupling of rotation and magnetization dynamics, and the stability is mainly limited by the gas-induced dissipation. In this latter case, high vacuum should be sufficient to extend stable levitation over experimentally relevant timescales. Our results demonstrate the possibility to experimentally observe the phenomenon of quantum spin stabilized magnetic levitation

    Real Estate and the Great Crisis: Lessons for Macroprudential Policy

    Get PDF
    Credit conditions have caused real estate booms and busts, owing to an underpricing of credit risk aided by regulatory arbitrage and shadow financing. Across countries, real estate price and credit bubbles have reflected not only inelastic land supply and thin trading, but also the amplification of shocks via backward-looking price expectations and financing based on distorted prices. Macroprudential lessons from the Great Crisis include preventing excess real estate financing and limiting the amplification and correlation of risks. Nonetheless, the costs and benefits of recent regulations require re-evaluation amid an ongoing need to address correlated risks from shadow financing and securitization

    Spin-polarized tunneling currents through a ferromagnetic insulator between two metallic or superconducting leads

    Full text link
    Using the Keldysh formalism the tunneling current through a hybrid structure where a confined magnetic insulator (I) is sandwiched between two non-magnetic leads is calculated. The leads can be either normal metals (M) or superconductors (S). Each region is modelled as a single band in tight-binding approximation in order to understand the formation of the tunneling current as clearly as possible. The tunneling process itself is simulated by a hybridization between the lead and insulator conduction bands. The insulator is assumed to have localized moments which can interact with the tunneling electrons. This is described by the Kondo Lattice Model (KLM) and treated within an interpolating self-energy approach. For the superconductor the mean-field BCS theory is used. The spin polarization of the current shows a strong dependence both on the applied voltage and the properties of the materials. Even for this idealized three band model there is a qualitative agreement with experiment.Comment: 15 pages, 23 figures, accepted for publication in PR

    Simultaneous X-ray and Ultraviolet Observations of the SW Sextantis Star DW Ursae Majoris

    Get PDF
    We present the first pointed X-ray observation of DW Ursae Majoris, a novalike cataclysmic variable (CV) and one of the archetype members of the SW Sextantis class, obtained with the XMM-Newton satellite. These data provide the first detailed look at an SW Sex star in the X-ray regime (with previous X-ray knowledge of the SW Sex stars limited primarily to weak or non-detections in the ROSAT All Sky Survey). It is also one of only a few XMM-Newton observations (to date) of any high mass transfer rate novalike CV, and the only one in the evolutionarily important 3-4 hr orbital period range. The observed X-ray spectrum of DW UMa is very soft, with ~95% of the detected X-ray photons at energies <2 keV. The spectrum can be fit equally well by a one-component cooling flow model, with a temperature range of 0.2-3.5 keV, or a two-component, two-temperature thermal plasma model, containing hard (~5-6 keV) and soft (~0.8 keV) components. The X-ray light curve of DW UMa shows a likely partial eclipse, implying X-ray reprocessing in a vertically extended region, and an orbital modulation, implying a structural asymmetry in the X-ray reprocessing site (e.g., it cannot be a uniform corona). We also obtained a simultaneous near-ultraviolet light curve of DW UMa using the Optical Monitor on XMM-Newton. This light curve is similar in appearance to published optical-UV light curves of DW UMa and shows a prominent deep eclipse. Regardless of the exact nature of the X-ray reprocessing site in DW UMa, the lack of a prominent hard X-ray total eclipse and very low fraction of high energy X-rays point to the presence of an optically and geometrically thick accretion disk that obscures the boundary layer and modifies the X-ray spectrum emitted near the white dwarf

    The Mid-Infrared Spectrum of the Short Orbital Period Polar EF Eridani from the Spitzer Space Telescope

    Get PDF
    We present the first mid-infrared (5.5-14.5 micron) spectrum of a highly magnetic cataclysmic variable, EF Eridani, obtained with the Infrared Spectrograph on the Spitzer Space Telescope. The spectrum displays a relatively flat, featureless continuum. A spectral energy distribution model consisting of a 9500 K white dwarf, L5 secondary star, cyclotron emission corresponding to a B~13 MG white dwarf magnetic field, and an optically thin circumbinary dust disk is in reasonable agreement with the extant 2MASS, IRAC, and IRS observations of EF Eri. Cyclotron emission is ruled out as a dominant contributor to the infrared flux density at wavelengths >3 microns. The spectral energy distribution longward of ~5 microns is dominated by dust emission. Even longer wavelength observations would test the model's prediction of a continuing gradual decline in the circumbinary disk-dominated region of the spectral energy distribution.Comment: To be published in The Astrophysical Journa

    CBU_1932: A Hypothetical DNA-Binding Protein of the Q Fever Pathogen Coxiella Burnetii

    Get PDF
    Coxiella burnetii is an obligate intracellular bacterial pathogen that resides within a lysosome-like acidic compartment of the eukaryotic host cell and may cause acute and chronic human infections.  Our recent transcriptome analysis of C. burnetii demonstrated that the CBU_1932 open reading frame displayed an exceptionally high transcript level at 11,481 transcripts per million (TPM), well above average transcript quantity for remaining ORFs in the genome.  Due to it’s high transcript level we hypothesize the corresponding protein may play an important role for Coxiella.  Analysis of the CBU_1932 locus indicates that one of the adjacent ORFs, CBU_1933 is a hypothetical DNA binding protein.  The protein encoded by CBU_1932 ORF consists of 66 amino acid residues with an unusually high percentage (42%) of residues being basic, including 20 lysines.  Using BLAST algorithms we found CBU_1932 had no similarity with currently defined proteins, but has orthologues in other human intracellular pathogens such as Legionella and Chlamydia. Due to the high number of basic residues in CBU_1932, and linkage with a hypothetical DNA binding protein (CBU_1933), we hypothesize that CBU_1932 may also encode a protein involved with binding DNA or other negatively charged substrates.  To address this hypothesis, we are in the process of cloning the 201-base pair CBU_1932 ORF into pMAL-c5x expression plasmid and analyzing the recombinant protein using DNA-binding protocols including electrophoretic mobility-shift assay EMSA.  We are confident that characterization of this high-level transcript/highly basic protein will lead to a better understanding of the unique metabolism of Coxiella and other intracellular pathogens

    Electron rescattering at metal nanotips induced by ultrashort laser pulses

    Full text link
    We report on the first investigation of plateau and cut-off structures in photoelectron spectra from nano-scale metal tips interacting with few-cycle near-infrared laser pulses. These hallmarks of electron rescattering, well-known from atom-laser interaction in the strong-field regime, appear at remarkably low laser intensities with nominal Keldysh parameters of the order of 10\gtrsim 10. Quantum and quasi-classical simulations reveal that a large field enhancement near the tip and the increased backscattering probability at a solid-state target play a key role. Plateau electrons are by an order of magnitude more abundant than in comparable atomic spectra, reflecting the high density of target atoms at the surface. The position of the cut-off serves as an in-situ probe for the locally enhanced electric field at the tip apex
    corecore