409 research outputs found

    Pirates, Highwaymen, and the Origins of the Criminal in Seventeenth-Century English Thought

    Get PDF
    This Note outlines a genealogy of the early modem English criminal. I posit an intellectual historical account of the relationship between international law concepts and the figure of the criminal in both canonical liberal social contract thought and the development of criminal enforcement in England. Tracing the figure of the brigand or latro\u27 from international legal texts of the sixteenth century into seventeenth-century English political and literary tracts, I reach the following conclusion: The criminal, as the figure would come to be understood in nineteenth century thought, actually pre-dates a body of criminal law as such

    Evaluating elliptic functions and their inverses

    Get PDF
    AbstractIn [1], the authors described an inverse interpolation scheme for estimating inverse Jacobian elliptic functions in an environment like MATLAB where direct but not inverse evaluation is available. Here, an easily programmed alternative based on the standard arithmetic-geometric-mean tabloid is developed. A novel recursion eliminates need for evaluating tangents and inverse tangents at intermediate steps in the algorithm. A similar algorithm is developed for evaluation of elliptic functions when given argument and modulus. The latter seems less beneficial, especially when standard software evaluation is available. Numerical results indicate robustness and high accuracy

    Basis functions for concave polygons

    Get PDF
    AbstractPolynomials suffice as finite element basis functions for triangles, parallelograms, and some other elements of little practical importance. Rational basis functions extend the range of allowed elements to the much wider class of well-set algebraic elements, where well-set is a convexity type constraint. The extension field from R(x,y) to R(x,y,x2+y2) removes this quadrilateral constraint as described in Chapter 8 of [E.L. Wachspress, A Rational Finite Element Basis, Academic Press, 1975]. The basis function construction described there is clarified here, first for concave quadrilaterals and then for concave polygons. Its application is enhanced by the GADJ algorithm [G. Dasgupta, E.L. Wachspress, The adjoint for an algebraic finite element, Computers and Mathematics with Applications, doi:10.1016/j.camwa.2004.03.021] for finding the denominator polynomial common to all the basis functions

    Performance optimization for rotors in hover and axial flight

    Get PDF
    Performance optimization for rotors in hover and axial flight is a topic of continuing importance to rotorcraft designers. The aim of this Phase 1 effort has been to demonstrate that a linear optimization algorithm could be coupled to an existing influence coefficient hover performance code. This code, dubbed EHPIC (Evaluation of Hover Performance using Influence Coefficients), uses a quasi-linear wake relaxation to solve for the rotor performance. The coupling was accomplished by expanding of the matrix of linearized influence coefficients in EHPIC to accommodate design variables and deriving new coefficients for linearized equations governing perturbations in power and thrust. These coefficients formed the input to a linear optimization analysis, which used the flow tangency conditions on the blade and in the wake to impose equality constraints on the expanded system of equations; user-specified inequality contraints were also employed to bound the changes in the design. It was found that this locally linearized analysis could be invoked to predict a design change that would produce a reduction in the power required by the rotor at constant thrust. Thus, an efficient search for improved versions of the baseline design can be carried out while retaining the accuracy inherent in a free wake/lifting surface performance analysis

    Rotor design optimization using a free wake analysis

    Get PDF
    The aim of this effort was to develop a comprehensive performance optimization capability for tiltrotor and helicopter blades. The analysis incorporates the validated EHPIC (Evaluation of Hover Performance using Influence Coefficients) model of helicopter rotor aerodynamics within a general linear/quadratic programming algorithm that allows optimization using a variety of objective functions involving the performance. The resulting computer code, EHPIC/HERO (HElicopter Rotor Optimization), improves upon several features of the previous EHPIC performance model and allows optimization utilizing a wide spectrum of design variables, including twist, chord, anhedral, and sweep. The new analysis supports optimization of a variety of objective functions, including weighted measures of rotor thrust, power, and propulsive efficiency. The fundamental strength of the approach is that an efficient search for improved versions of the baseline design can be carried out while retaining the demonstrated accuracy inherent in the EHPIC free wake/vortex lattice performance analysis. Sample problems are described that demonstrate the success of this approach for several representative rotor configurations in hover and axial flight. Features that were introduced to convert earlier demonstration versions of this analysis into a generally applicable tool for researchers and designers is also discussed

    In Defense of Free Houses

    Get PDF

    Analysis of rotor vibratory loads using higher harmonic pitch control

    Get PDF
    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code

    Computation of rotor aerodynamic loads in forward flight using a full-span free wake analysis

    Get PDF
    The development of an advanced computational analysis of unsteady aerodynamic loads on isolated helicopter rotors in forward flight is described. The primary technical focus of the development was the implementation of a freely distorting filamentary wake model composed of curved vortex elements laid out along contours of constant vortex sheet strength in the wake. This model captures the wake generated by the full span of each rotor blade and makes possible a unified treatment of the shed and trailed vorticity in the wake. This wake model was coupled to a modal analysis of the rotor blade dynamics and a vortex lattice treatment of the aerodynamic loads to produce a comprehensive model for rotor performance and air loads in forward flight dubbed RotorCRAFT (Computation of Rotor Aerodynamics in Forward Flight). The technical background on the major components of this analysis are discussed and the correlation of predictions of performance, trim, and unsteady air loads with experimental data from several representative rotor configurations is examined. The primary conclusions of this study are that the RotorCRAFT analysis correlates well with measured loads on a variety of configurations and that application of the full span free wake model is required to capture several important features of the vibratory loading on rotor blades in forward flight

    On the approximation in the smoothed finite element method (SFEM)

    Full text link
    This letter aims at resolving the issues raised in the recent short communication [1] and answered by [2] by proposing a systematic approximation scheme based on non-mapped shape functions, which both allows to fully exploit the unique advantages of the smoothed finite element method (SFEM) [3, 4, 5, 6, 7, 8, 9] and resolve the existence, linearity and positivity deficiencies pointed out in [1]. We show that Wachspress interpolants [10] computed in the physical coordinate system are very well suited to the SFEM, especially when elements are heavily distorted (obtuse interior angles). The proposed approximation leads to results which are almost identical to those of the SFEM initially proposed in [3]. These results that the proposed approximation scheme forms a strong and rigorous basis for construction of smoothed finite element methods.Comment: 14 pages, 9 figures, 1 table; International Journal for Numerical Methods in Engineering, 201

    Dynamics with matrices possessing kronecker product structure

    Get PDF
    In this paper we present an application of Alternating Direction Implicit (ADI) algorithm for solution of non-stationary PDE-s using isogeometric finite element method. We show that ADI algorithm has a linear computational cost at every time step. We illustrate this approach by solving two example non-stationary three-dimensional problems using explicit Euler and Newmark time-stepping scheme: heat equation and linear elasticity equations for a cube. The stability of the simulation is controlled by monitoring the energy of the solution
    • …
    corecore