3 research outputs found

    Lipid polymorphism of the subchloroplast—granum and stroma thylakoid membrane–particles. II. structure and functions

    Get PDF
    In Part I, by using (31)P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (H(II)) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments—in line with the low susceptibility of the bilayer against the same treatment, as reflected by our (31)P-NMR spectroscopy. Signatures of H(II)-phase could not be discerned with small-angle X-ray scattering—but traces of H(II) structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts

    Poly(Pyridinium Salt)s Containing 2,7-Diamino-9,9\u27-Dioctylfluorene Moieties with Various Organic Counterions Exhibiting Both Lyotropic Liquid-Crystalline and Light-Emitting Properties

    Get PDF
    A series of poly(pyridinium salt)s-fluorene main-chain ionic polymers with various organic counterions were synthesized by using ring-transmutation polymerization and metathesis reactions. Their chemical structures were characterized by Fourier Transform Infrared (FTIR), proton (1H), and fluorine 19 (19F) nuclear magnetic resonance (NMR) spectrometers. These polymers showed a number-average molecular weight (Mns) between 96.5 and 107.8 kg/mol and polydispersity index (PDI) in the range of 1.12-1.88. They exhibited fully-grown lyotropic phases in polar protic and aprotic solvents at different critical concentrations. Small-angle X-ray scattering for one polymer example indicates lyotropic structure formation for 60-80% solvent fraction. A lyotropic smectic phase contains 10 nm polymer platelets connected by tie molecules. The structure also incorporates a square packing motif within platelets. Thermal properties of polymers were affected by the size of counterions as determined by differential scanning calorimetry and thermogravimetric analysis measurements. Their ultraviolet-visible (UV-Vis) absorption spectra in different organic solvents were essentially identical, indicating that the closely spaced π-π* transitions occurred in their conjugated polymer structures. In contrast, the emission spectra of polymers exhibited a positive solvatochromism on changing the polarity of solvents. They emitted green lights in both polar and nonpolar organic solvents and showed blue light in the film-states, but their λem peaks were dependent on the size of the counterions. They formed aggregates in polar aprotic and protic solvents with the addition of water (v/v, 0-90%), and their λem peaks were blue shifted

    Intercalation of Bovine Serum Albumin Coated Gold Clusters Between Phospholipid Bilayers: Temperature-Dependent Behavior of Lipid-AuQC@BSA Assemblies with Red Emission and Superlattice Structure

    No full text
    A method has been developed to encapsulate bovine serum albumin (BSA)-coated gold quantum clusters (AuQC@BSA) in a multilamellar system of dipalmitoylphosphatidylcholine (DPPC). Results have shown that intercalation of AuQC@BSA particles into lipid bilayers occurs in the presence of CaCl2. Intense red photoluminescence emission was observed after encapsulation of the clusters. A well-defined structure was found with periodic distances drastically larger than that in the pure DPPC/water system. Although Ca2+ ions can change the dipole characteristics of the lipid bilayer surface, leading to unbinding between the bilayers of multilamellar DPPC/water system, the repulsion is shielded in the presence of AuQC@BSA particles. A coherent superlattice structure evolves due to mixed Ca2+-DPPC and Ca2+-AuQC@BSA interactions. Studies at different temperatures have suggested a correlation between the luminescence properties of the clusters and phase transition of the lipid layers. The temperature-dependent behavior assumes the connection between the coating and the lipid bilayer surface. Temperature-dependent features of lipid intercalated Au clusters provide new opportunities in their application
    corecore