4 research outputs found

    Mapping the Basicity of Selected 3d and 4d Metal Nitrides: A DFT Study

    No full text
    Nitride complexes have been invoked as catalysts and intermediates in a wide variety of transformations and are noted for their tunable acid/base properties. A density functional theory study is reported herein that maps the basicity of 3d and 4d transition metals that routinely form nitride complexes: V, Cr, Mn, Nb, Mo, Tc, and Ru. Complexes were gathered from the Cambridge Structural Database, and from the free energy of protonation, the pKb(N) of the nitride group was calculated to quantify the impact of metal identity, oxidation state, coordination number, and supporting ligand type upon metal-nitride basicity. In general, the basicity of transition metal nitrides decreases from left to right across the 3d and 4d rows and increases from 3d metals to their 4d congeners. Metal identity and oxidation state primarily determine basicity trends; however, supporting ligand types have a substantial impact on the basicity range for a given metal. Synergism of these factors in determining the overall pKb(N) values is discussed, as are the implications for the catalytic reactivity of metal nitrides

    Three Component Cascade Reaction of Cyclohexanones, Aryl Amines, and Benzoylmethylene Malonates: Cooperative Enamine-Brønsted Acid Approach to Tetrahydroindoles

    No full text
    A three-component cascade reaction comprising cyclic ketones, arylamines, and benzoylmethylene malonates has been developed to access 4,5,6,7-tetrahydro-1H-indoles. The reaction was achieved through cooperative enamine-Brønsted catalysis in high yields with wide substrate scopes. Mechanistic studies identified the role of the Brønsted acid catalyst and revealed the formation of an imine intermediate, which was confirmed by X-ray crystallography

    Three Component Cascade Reaction of Cyclohexanones, Aryl Amines, and Benzoylmethylene Malonates: Cooperative Enamine-Brønsted Acid Approach to Tetrahydroindoles

    No full text
    A three-component cascade reaction comprising cyclic ketones, arylamines, and benzoylmethylene malonates has been developed to access 4,5,6,7-tetrahydro-1H-indoles. The reaction was achieved through cooperative enamine-Brønsted catalysis in high yields with wide substrate scopes. Mechanistic studies identified the role of the Brønsted acid catalyst and revealed the formation of an imine intermediate, which was confirmed by X-ray crystallography

    Three Component Cascade Reaction of Cyclohexanones, Aryl Amines, and Benzoylmethylene Malonates: Cooperative Enamine-Brønsted Acid Approach to Tetrahydroindoles

    No full text
    A three-component cascade reaction comprising cyclic ketones, arylamines, and benzoylmethylene malonates has been developed to access 4,5,6,7-tetrahydro-1H-indoles. The reaction was achieved through cooperative enamine-Brønsted catalysis in high yields with wide substrate scopes. Mechanistic studies identified the role of the Brønsted acid catalyst and revealed the formation of an imine intermediate, which was confirmed by X-ray crystallography
    corecore