98 research outputs found

    Blood pressure variability and closed-loop baroreflex assessment in adolescent chronic fatigue syndrome during supine rest and orthostatic stress

    Get PDF
    Hemodynamic abnormalities have been documented in the chronic fatigue syndrome (CFS), indicating functional disturbances of the autonomic nervous system responsible for cardiovascular regulation. The aim of this study was to explore blood pressure variability and closed-loop baroreflex function at rest and during mild orthostatic stress in adolescents with CFS. We included a consecutive sample of 14 adolescents 12–18 years old with CFS diagnosed according to a thorough and standardized set of investigations and 56 healthy control subjects of equal sex and age distribution. Heart rate and blood pressure were recorded continuously and non-invasively during supine rest and during lower body negative pressure (LBNP) of –20 mmHg to simulate mild orthostatic stress. Indices of blood pressure variability and baroreflex function (α-gain) were computed from monovariate and bivariate spectra in the low-frequency (LF) band (0.04–0.15 Hz) and the high–frequency (HF) band (0.15–0.50 Hz), using an autoregressive algorithm. Variability of systolic blood pressure in the HF range was lower among CFS patients as compared to controls both at rest and during LBNP. During LBNP, compared to controls, α-gain HF decreased more, and α-gain LF and the ratio of α-gain LF/α-gain HF increased more in CFS patients, all suggesting greater shift from parasympathetic to sympathetic baroreflex control. CFS in adolescents is characterized by reduced systolic blood pressure variability and a sympathetic predominance of baroreflex heart rate control during orthostatic stress. These findings may have implications for the pathophysiology of CFS in adolescents

    Dissipative Dynamics of Collisionless Nonlinear Alfven Wave Trains

    Full text link
    The nonlinear dynamics of collisionless Alfven trains, including resonant particle effects is studied using the kinetic nonlinear Schroedinger (KNLS) equation model. Numerical solutions of the KNLS reveal the dynamics of Alfven waves to be sensitive to the sense of polarization as well as the angle of propagation with respect to the ambient magnetic field. The combined effects of both wave nonlinearity and Landau damping result in the evolutionary formation of stationaryOA S- and arc-polarized directional and rotational discontinuities. These waveforms are freqently observed in the interplanetary plasma.Comment: REVTeX, 6 pages (including 5 figures). This and other papers may be found at http://sdphpd.ucsd.edu/~medvedev/papers.htm

    Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media

    Full text link
    We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction of spatial solitons.Comment: Review article, will be published in Journal of Optics B, special issue on Optical Solitons, 6 figure

    Quadratic solitons as nonlocal solitons

    Get PDF
    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for novel analytical solutions and the prediction of novel bound states of quadratic solitons.Comment: 4 pages, 3 figure

    Berry phases for the nonlocal Gross-Pitaevskii equation with a quadratic potential

    Full text link
    A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for the nonstationary Gross -- Pitaevskii equation with nonlocal nonlinearity and a quadratic potential. The asymptotic parameter is 1/T, where T≫1T\gg1 is the adiabatic evolution time. A generalization of the Berry phase of the linear Schr\"odinger equation is formulated for the Gross-Pitaevskii equation. For the solutions constructed, the Berry phases are found in explicit form.Comment: 13 pages, no figure

    Inflammation, Amyloid, and Atrophy in The Aging Brain: Relationships with Longitudinal Changes in Cognition

    Get PDF
    Amyloid deposition occurs in aging, even in individuals free from cognitive symptoms, and is often interpreted as preclinical Alzheimer’s disease (AD) pathophysiology. YKL-40 is a marker of neuroinflammation, being increased in AD, and hypothesized to interact with amyloid-β (Aβ) in causing cognitive decline early in the cascade of AD pathophysiology. Whether and how Aβ and YKL-40 affect brain and cognitive changes in cognitively healthy older adults is still unknown. We studied 89 participants (mean age: 73.1 years) with cerebrospinal fluid samples at baseline, and both MRI and cognitive assessments from two time-points separated by two years. We tested how baseline levels of Aβ42 and YKL-40 correlated with changes in cortical thickness and cognition. Thickness change correlated with Aβ42 only in Aβ42+ participants (<600 pg/mL, n = 27) in the left motor and premotor cortices. Aβ42 was unrelated to cognitive change. Increased YKL-40 was associated with less preservation of scores on the animal naming test in the total sample (r = –0.28, p = 0.012) and less preservation of a score reflecting global cognitive function for Aβ42+ participants (r = –0.58, p = 0.004). Our results suggest a role for inflammation in brain atrophy and cognitive changes in cognitively normal older adults, which partly depended on Aβ accumulation

    Neuroinflammation and Tau Interact with Amyloid in Predicting Sleep Problems in Aging Independently of Atrophy

    Get PDF
    Sleep problems relate to brain changes in aging and disease, but the mechanisms are unknown. Studies suggest a relationship between β-amyloid (Aβ) accumulation and sleep, which is likely augmented by interactions with multiple variables. Here, we tested how different cerebrospinal fluid (CSF) biomarkers for brain pathophysiology, brain atrophy, memory function, and depressive symptoms predicted self-reported sleep patterns in 91 cognitively healthy older adults over a 3-year period. The results showed that CSF levels of total- and phosphorylated (P) tau, and YKL-40—a marker of neuroinflammation/astroglial activation—predicted poor sleep in Aβ positive older adults. Interestingly, although brain atrophy was strongly predictive of poor sleep, the relationships between CSF biomarkers and sleep were completely independent of atrophy. A joint analysis showed that unique variance in sleep was explained by P-tau and the P-tau × Aβ interaction, memory function, depressive symptoms, and brain atrophy. The results demonstrate that sleep relates to a range of different pathophysiological processes, underscoring the importance of understanding its impact on neurocognitive changes in aging and people with increased risk of Alzheimer's disease

    Preclinical Amyloid-beta and Axonal Degeneration Pathology in Delirium

    Get PDF
    BACKGROUND: The clinical relevance of brain β-amyloidosis in older adults without dementia is not established. As delirium and dementia are strongly related, studies on patients with delirium may give pathophysiological clues. OBJECTIVE: To determine whether the Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarkers amyloid-β 1-42 (Aβ42), total tau (T-tau), and phosphorylated tau (P-tau) are associated with delirium in hip fracture patients with and without dementia. METHODS: CSF was collected in conjunction to spinal anesthesia in 129 patients. Delirium was assessed using the Confusion Assessment Method once daily in all patients, both pre- and postoperatively. The diagnosis of dementia at admission was based upon clinical consensus. CSF levels of Aβ42, T-tau, and P-tau were analyzed. RESULTS: In patients without dementia, we found lower CSF Aβ42 levels (median, 310 ng/L versus 489 ng/L, p = 0.006), higher T-tau levels (median, 505 ng/L versus 351 ng/L, p = 0.02), but no change in P-tau in patients who developed delirium (n = 16) compared to those who remained lucid (n = 49). Delirious patients also had lower ratios of Aβ42 to T-tau (p < 0.001) and P-tau (p = 0.001) relative to those without delirium. CSF Aβ42 and T-tau remained significantly associated with delirium status in adjusted analyses. In patients with dementia, CSF biomarker levels did not differ between those with (n = 54) and without delirium (n = 10). CONCLUSION: The reduction in CSF Aβ42, indicating β-amyloidosis, and increase in T-tau, indicating neurodegeneration, in hip fracture patients without dementia developing delirium indicates that preclinical AD brain pathology is clinically relevant and possibly plays a role in delirium pathophysiology

    Hamiltonian form and solitary waves of the spatial Dysthe equations

    Get PDF
    The spatial Dysthe equations describe the envelope evolution of the free-surface and potential of gravity waves in deep waters. Their Hamiltonian structure and new invariants are unveiled by means of a gauge transformation to a new canonical form of the evolution equations. An accurate Fourier-type spectral scheme is used to solve for the wave dynamics and validate the new conservation laws, which are satisfied up to machine precision. Traveling waves are numerically constructed using the Petviashvili method. It is shown that their collision appears inelastic, suggesting the non-integrability of the Dysthe equations.Comment: 6 pages, 9 figures. Other author's papers can be downloaded at http://www.lama.univ-savoie.fr/~dutykh
    • …
    corecore