16 research outputs found

    Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice

    Get PDF
    National Science Foundation of China [30770490]; 973 Program of China [2009CB941601]; Science Planning Program of Fujian Province [2009J1010]; Natural Science Foundation of Fujian Province [2009J01180]; Fujian Provincial Department of Science and TechnoloThe aim of the study was to investigate the effects of genetic deficiency of aldose reductase in mice on the development of key endpoints of diabetic nephropathy. A line of Ar (also known as Akr1b3)-knockout (KO) mice, a line of Ar-bitransgenic mice and control C57BL/6 mice were used in the study. The KO and bitransgenic mice were deficient for Ar in the renal glomeruli and all other tissues, with the exception of, in the bitransgenic mice, a human AR cDNA knockin-transgene that directed collecting-tubule epithelial-cell-specific AR expression. Diabetes was induced in 8-week-old male mice with streptozotocin. Mice were further maintained for 17 weeks then killed. A number of serum and urinary variables were determined for these 25-week-old mice. Periodic acid-Schiff staining, western blots, immunohistochemistry and protein kinase C (PKC) activity assays were performed for histological analyses, and to determine the levels of collagen IV and TGF-beta 1 and PKC activities in renal cortical tissues. Diabetes-induced extracellular matrix accumulation and collagen IV overproduction were completely prevented in diabetic Ar-KO and bitransgenic mice. Ar deficiency also completely or partially prevented diabetes-induced activation of renal cortical PKC, TGF-beta 1 and glomerular hypertrophy. Loss of Ar results in a 43% reduction in urine albumin excretion in the diabetic Ar-KO mice and a 48% reduction in the diabetic bitransgenic mice (p < 0.01). Genetic deficiency of Ar significantly ameliorated development of key endpoints linked with early diabetic nephropathy in vivo. Robust and specific inhibition of aldose reductase might be an effective strategy for the prevention and treatment of diabetic nephropathy

    Characterization of a Chlamydomonas reinhardtii mutant defective in a maltose transporter

    No full text
    Microalgae are potential sources of energy and high-value materials. To decipher the process of energy metabolism in green algae, we created a mutant pool of strain CC-503 of the model green microalga Chlamydomonas reinhardtii, by random insertion of an antibiotic resistance gene, and screened the pool for lines with altered carbon metabolism. We identified a mutant that harbored the antibiotic resistance gene in CrMEX1, a putative Maltose Exporter-Like protein 1 (Cre12.g486600.t1.2). The mutant had reduced levels of CrMEX1 expression and, similarly to the Arabidopsis mex1 knockout mutant, which cannot export maltose from the chloroplast, it over-accumulated starch granules in the chloroplast. The mutant&apos;s lipid levels were slightly higher than those of the wild type, and its initial growth kinetics were not significantly different from those of the wild type, but the mutant culture did not reach the same high cell density as the wild type in acetate-containing culture medium under continuous light. These results suggest that CrMEX1 encodes a maltose transporter protein, and that export of photoassimilates from chloroplasts is necessary for normal Chlamydomonas growth, even under continuous light with an ample supply of carbon in the form of acetate.1122sciescopuskc

    Identification of a Chlamydomonas plastidial 2-lysophosphatidic acid acyltransferase and its use to engineer microalgae with increased oil content

    No full text
    Despite a strong interest in microalgal oil production, our understanding of the biosynthetic pathways that produce algal lipids and the genes involved in the biosynthetic processes remains incomplete. Here, we report that Chlamydomonas reinhardtii Cre09.g398289 encodes a plastid-targeted 2-lysophosphatidic acid acyltransferase (CrLPAAT1) that acylates the sn-2 position of a 2-lysophosphatidic acid to form phosphatidic acid, the first common precursor of membrane and storage lipids. In vitro enzyme assays showed that CrLPAAT1 prefers 16:0-CoA to 18:1-CoA as an acyl donor. Fluorescent protein-tagged CrLPAAT1 was localized to the plastid membrane in C.reinhardtii cells. Furthermore, expression of CrLPAAT1 in plastids led to a>20% increase in oil content under nitrogen-deficient conditions. Taken together, these results demonstrate that CrLPAAT1 is an authentic plastid-targeted LPAAT in C.reinhardtii, and that it may be used as a molecular tool to genetically increase oil content in microalgae.11114Nsciescopu

    Plant ABC Transporters Enable Many Unique Aspects of a Terrestrial Plant&apos;s Lifestyle

    No full text
    Terrestrial plants have two to four times more ATP-binding cassette (ABC) transporter genes than other organisms, including their ancestral microalgae. Recent studies found that plants harboring mutations in these transporters exhibit dramatic phenotypes, many of which are related to developmental processes and functions necessary for life on dry land. These results suggest that ABC transporters multiplied during evolution and assumed novel functions that allowed plants to adapt to terrestrial environmental conditions. Examining the literature on plant ABC transporters from this viewpoint led us to propose that diverse ABC transporters enabled many unique and essential aspects of a terrestrial plant&apos;s lifestyle, by transporting various compounds across specific membranes of the plant.114727Ysciescopu

    N-terminally truncated POM121C inhibits HIV-1 replication

    Get PDF
    Recent studies have identified host cell factors that regulate early stages of HIV-1 infection including viral cDNA synthesis and orientation of the HIV-1 capsid (CA) core toward the nuclear envelope, but it remains unclear how viral DNA is imported through the nuclear pore and guided to the host chromosomal DNA. Here, we demonstrate that N-terminally truncated POM121C, a component of the nuclear pore complex, blocks HIV-1 infection. This truncated protein is predominantly localized in the cytoplasm, does not bind to CA, does not affect viral cDNA synthesis, reduces the formation of 2-LTR and diminished the amount of integrated proviral DNA. Studies with an HIV-1-murine leukemia virus (MLV) chimeric virus carrying the MLV-derived Gag revealed that Gag is a determinant of this inhibition. Intriguingly, mutational studies have revealed that the blockade by N-terminally-truncated POM121C is closely linked to its binding to importin-β/karyopherin subunit beta 1 (KPNB1). These results indicate that N-terminally-truncated POM121C inhibits HIV-1 infection after completion of reverse transcription and before integration, and suggest an important role for KPNB1 in HIV-1 replication
    corecore