36 research outputs found

    Position Control of Motion Compensation Cardiac Catheters

    Get PDF
    Robotic catheters have the potential to revolutionize cardiac surgery by enabling minimally invasive structural repairs within the beating heart. This paper presents an actuated catheter system that compensates for the fast motion of cardiac tissue using 3-D ultrasound image guidance. We describe the design and operation of the mechanical drive system and catheter module and analyze the catheter performance limitations of friction and backlash in detail. To mitigate these limitations, we propose and evaluate mechanical and control-system compensation methods, which include inverse and model-based backlash compensation, to improve the system performance. Finally, in vivo results are presented, which demonstrate that the catheter can track the cardiac tissue motion with less than 1-mm rms error. The ultimate goal of this research is to create a fast and dexterous robotic catheter system that can perform surgery on the delicate structures inside of the beating heart.Engineering and Applied Science

    Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain)

    Full text link
    The Mancha Oriental System (MOS, 7,260 km2) is one of the largest aquifers within Spain, and is encompassed by the Jucar River Basin. Over the past 30 years, socioeconomic development within the region has been largely due to intensive use of groundwater resources for irrigating crops (1,000 km2). Groundwater pumping (406 million m3/year) has provoked a steady drop in the groundwater level and a reduction of MOS discharge to the Jucar River. The study aims to characterize the river-aquifer relationship, to determine the influence that groundwater abstraction has on the river discharge. This research has advanced a three-dimensional large-scale numerical groundwater-flow model (MODFLOW 2000) in order to spatially and temporally evaluate, quantify and predict the river-aquifer interactions that are influenced by groundwater abstraction in MOS. It is demonstrated that although groundwater abstraction increased considerably from the early 1980s to 2000, the depletion of water stored in the aquifer was lower than might be expected. This is mainly due to aquifer recharge from the Jucar River, induced by groundwater abstraction. The area of disconnection between the river and the water table (i. e. where groundwater head is lower than the riverbed) is found to have spread 20km downstream from its position before pumping started. © 2010 Springer-Verlag.This study was funded by the Spanish Government under research grant CGL2008-06394-C02-02/BTE. Special thanks go to the Jucar Water Authority (CHJ) and stakeholders (JCRMO) in the Mancha Oriental System for providing the information necessary. The content of this report does not represent the view of CHJ and JCRMO.Sanz, D.; Castano, S.; Cassiraga ., EF.; Sahuquillo Herráiz, A.; Gomez-Alday, J.; Peña Haro, S.; Calera, A. (2011). Modeling aquifer-river interactions under the influence of groundwater abstraction in the Mancha Oriental System (SE Spain). HYDROGEOLOGY JOURNAL. 19(2):475-487. https://doi.org/10.1007/s10040-010-0694-xS475487192Calera A, Medrano J, Vela A, Castaño S (1999) GIS tools applied to the sustainable management of hydric resources: application to the aquifer system 08-29. Agric Water Manage 40:207–220Calver A (2001) Riverbed permeabilities: information from pooled data. Ground Water 39:546–555Castaño S, Sanz D, Gómez-Alday JJ (2009) Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water Resour Manage 24:795–814DGOH (1988) Estudio de la explotación de aguas subterráneas en el acuífero de la Mancha Oriental y su influencia sobre los caudales del río Júcar [Study of the exploitation of groundwater in the Mancha Oriental Aquifer and its influence of the Jucar river flow]. DGOH, MadridDGOH (1993) Estudio de seguimiento de impacto de las extracciones de aguas subterráneas en los acuíferos de la Mancha Oriental y los caudales del río Júcar. Masrid [Monitoring study of the impact of groundwater abstractions on Mancha Oriental Aquifer and Jucar river flow]. DGOH, MadridDoherty J (2004) PEST model-independent parameter estimation users manual. Watermark, Brisbane, AustraliaEstrela T (2004) Jucar Pilot River Basin: provisional article 5 report pursuant to the Water Framework Directive. Ministerio de Medio Ambiente, Valencia, Spain Available via http://www.phjucar.com/docs/otros_docs/Article_5_complete.pdf . Cited 09 November 2010Fernández-Sanchez JA, Lucena Bonny C, Tapia Granados F (1983) Descripción y resultados del modelo matemático del acuífero de Albacete [Description and results of mathematical modelling of the aquifers in Albacete]. III Simposio de Hidrogeología, IGME, Madrid, pp 125–131Fleckenstein JH, Suzuki E, Fogg G (2001) Options for conjunctive water management to restore fall flows in the Consumnes River basin, California. In: Mariño MA, Simnovic SP (eds) Integrated water resources management. IAHS publication 272, IAHS, Wallingford, UK, pp 175–182Fleckenstein JH, Anderson M, Fogg G, Mount J (2004) Managing surface water-groundwater to restore fall flows in the Cosumnes River. J Water Resour Plann Manage 130(4):301–310Fleckenstein JH, Niswonger RG, Fogg G (2006) River–aquifer interactions, geologic heterogeneity, and low-flow management. Ground Water 44:837–852Font E (2004) Colaboración y desarrollo de un modelo matemático distribuido de flujo subterráneo de la Unidad Hidrogeológica 08.29 Mancha Oriental en las provincias de Albacete, Cuenca y Valencia [Collaboration and development of a distributed mathematical model of groundwater flow in the hydrogeological unit 08.29, Eastern Mancha in Albacete, Cuenca and Valencia provinces]. MSc Thesis, Polytechnical University of Valencia, Spain. http://www.chj.es/medioambiente/planificacionhidrologica/Documents/Mejora%20del%20Conocimiento/MEMORIAPFCOPH.pdf . Cited 09 November 2010Gorelick SM (eds) (1986) Conjunctive water use: understanding and managing surfacewater-groundwater interactions. IAHS publication no. 156, IAHS, Wallingford, UKHamm SY, Cheong JY, Kim HS (2005) Comparing inversion and trial-and-error methods to determine optimum yield at a riverbank filtration site, Korea. Salt Lake City Annual Meeting. Geol Soc Am Abst 37(7)1–66Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, The U.S. Geological Survey modular groundwater model-User guide to modularization concepts and the groundwater flow process. US Geol Surv Open-File Rep 00–92, 121 ppIGME (1980) El sistema hidrogeológico de Albacete (Mancha Oriental): sus recursos en aguas subterráneas, utilización actual y posibilidades futuras [The Albacete hydrogeological system (Mancha Oriental): groundwater resources, actual uses and future scope]. IGME, MadridIGME (2006) Modelo Matemático de flujo de la Unidad Hidrogeológica 08.29, Mancha Oriental [Mathematical modeling of flow of the hydrogeological unit 08.29, eastern Mancha]. IGME, MadridJagelke J, Barthel R (2005) Conceptualization and implementation of a regional groundwater model for the Neckar catchment in the framework of an integrated regional model. ADGEO 5:105–111Langhoff JH, Rasmussen KR, Christensen S (2006) Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. J Hydrol 320:342–358Martínez-Santos P, Llamas MR, Martínez-Alfaro P (2008) Vulnerability assessment of groundwater resources: a modelling-based approach to the Mancha Occidental aquifer, Spain. Environ Modell Softw 23:1145–1162McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US Geological Survey Technical Manual of Water Resources Investigation, Book 6, US Geological Survey, Reston, Va, 586 ppNemeth MS, Solo-Gabriele HM (2002) Evaluation of the use of reach transmissivity to quantify exchange between groundwater and surface water. J Hydrol 274:145–159Osman YZ, Bruen MP (2002) Modelling stream-aquifer seepage in alluvial aquifer: an improved loosing-stream package for MODFLOW. J Hydrol 264:60–86Pisinaras V, Petalas C, Tsihrintzis VA, Zagana E (2007) A groundwater flow model for water resources management in the Ismarida plain, north Greece. Environ Model Assess 12:75–89Pulido-Velazquez AM, Sahuquillo A, Ochoa-Rivera C, Pulido-Velazqueza D (2005) Modeling of stream–aquifer interaction: the embedded multireservoir model. J Hydrol 313:166–181Rodríguez LB, Cello PA, Vionnet CA (2005) Modeling stream-aquifer interactions in a shallow aquifer, Choele Choel Island, Patagonia, Argentina. Hydrogeol J 14:591–602Ruiz JM (1999) Modelo distribuido para la evaluación de recursos hídricos [Distributed model for water resource assessment]. CEDEX, Madrid, 245 ppRushton K (2007) Representation in regional models of saturated river–aquifer interaction for gaining/losing rivers. J Hydrol 334:262–281Sanz D (2005) Contribución a la caracterización geométrica de las unidades hidrogeológicas que integran el sistema de acuíferos de la Mancha oriental [Contribution to the geometrical characterization of the hydrogeological unit which forms the Mancha Oriental aquifers system]. PhD Thesis, Univ. Complutense de Madrid, SpainSanz D, Gómez-Alday JJ, Castaño S, Moratalla A, De las Heras J, Martínez Alfaro PM (2009) Hydrostratigraphic framework and hydrogeological behaviour of the Mancha Oriental System (SE Spain). Hydrogeol J 17:1375–1391Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67Tóth J (1970) A conceptual model of the groundwater regime and the hydrogeological environment. J Hydrol 10:164–176Trescott PC (1975) Documentation of a finite difference model for simulation of three dimensional ground-water flow. US Geol Surv Open-File Rep 75-438, 48 ppUCLM (2008) Hydrological model for estimation recharge and evapotranspiration by remote sensing and GIS. UCLM, Albacete, Spain. http://www.hidromore.es/ . Cited 12 November 2010Vázquez-Suñe E, Abarca E, Carrera J, Capino B, Gámez D, Pool M, Simó T, Batlle F, Niñerota JM, Ibáñez X (2006) Groundwater modelling as a tool for the European Water Framework Directive (WFD) application: the Llobregat case. Phys Chem Earth 31:1015–1029Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. In: U.S. National report to International Union of Geodesy and Geophysics 19911994. Rev Geophys 33(Suppl):985–994Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeological thought. Ground Water 38:423–429Younger PL (1995) Modelling river–aquifer interactions. In: Younger PL (ed) Proc BHS National Meeting. British Hydrological Society Occasional Paper no. 6, BHS, LondonZume J, Tarhule A (2008) Simulating the impacts of groundwater pumping on stream–aquifer dynamics in semiarid northwestern Oklahoma, USA. Hydrogeol J 16:797–81
    corecore