48 research outputs found

    Nonattendance in pediatric pulmonary clinics: an ambulatory survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nonattendance for scheduled appointments disturbs the effective management of pediatric pulmonary clinics. We hypothesized that the reasons for non-attendance and the necessary solutions might be different in pediatric pulmonary medicine than in other pediatric fields. We therefore investigated the factors associated with nonattendance this field in order to devise a corrective strategy.</p> <p>Methods</p> <p>The effect of age, gender, ethnic origin, waiting time for an appointment and the timing of appointments during the day on nonattendance proportion were assessed. Chi-square tests were used to analyze statistically significant differences of categorical variables. Logistic regression models were used for multivariate analysis.</p> <p>Results</p> <p>A total of 1190 pediatric pulmonology clinic visits in a 21 month period were included in the study. The overall proportion of nonattendance was 30.6%. Nonattendance was 23.8% when there was a short waiting time for an appointment (1–7 days) and 36.3% when there was a long waiting time (8 days and above) (p-value < 0.001). Nonattendance was 28.7% between 8 a.m. to 3 p.m. and 37.5% after 3 p.m. (p = 0.007). Jewish rural patients had 15.4% nonattendance, Jewish urban patients had 31.2% nonattendance and Bedouin patients had 32.9% nonattendance (p < 0.004). Age and gender were not significantly associated with nonattendance proportions. A multivariate logistic regression model demonstrated that the waiting time for an appointment, time of the day, and the patients' origin was significantly associated with nonattendance.</p> <p>Conclusion</p> <p>The factors associated with nonattendance in pediatric pulmonary clinics include the length of waiting time for an appointment, the hour of the appointment within the day and the origin of the patient.</p

    In vivo imaging of pancreatic tumours and liver metastases using 7 Tesla MRI in a murine orthotopic pancreatic cancer model and a liver metastases model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is the fourth leading cause of tumour death in the western world. However, appropriate tumour models are scarce. Here we present a syngeneic murine pancreatic cancer model using 7 Tesla MRI and evaluate its clinical relevance and applicability.</p> <p>Methods</p> <p>6606PDA murine pancreatic cancer cells were orthotopically injected into the pancreatic head. Liver metastases were induced through splenic injection. Animals were analyzed by MRI three and five weeks following injection. Tumours were detected using T2-weighted high resolution sequences. Tumour volumes were determined by callipers and MRI. Liver metastases were analyzed using gadolinium-EOB-DTPA and T1-weighted 3D-Flash sequences. Tumour blood flow was measured using low molecular gadobutrol and high molecular gadolinium-DTPA.</p> <p>Results</p> <p>MRI handling and applicability was similar to human systems, resolution as low as 0.1 mm. After 5 weeks tumour volumes differed significantly (p < 0.01) when comparing calliper measurments (n = 5, mean 1065 mm<sup>3</sup>+/-243 mm<sup>3</sup>) with MRI (mean 918 mm<sup>3</sup>+/-193 mm<sup>3</sup>) with MRI being more precise. Histology (n = 5) confirmed MRI tumour measurements (mean size MRI 38.5 mm<sup>2</sup>+/-22.8 mm<sup>2 </sup>versus 32.6 mm<sup>2</sup>+/-22.6 mm<sup>2 </sup>(histology), p < 0,0004) with differences due to fixation and processing of specimens. After splenic injection all mice developed liver metastases with a mean of 8 metastases and a mean volume of 173.8 mm<sup>3</sup>+/-56.7 mm<sup>3 </sup>after 5 weeks. Lymphnodes were also easily identified. Tumour accumulation of gadobutrol was significantly (p < 0.05) higher than gadolinium-DTPA. All imaging experiments could be done repeatedly to comply with the 3R-principle thus reducing the number of experimental animals.</p> <p>Conclusions</p> <p>This model permits monitoring of tumour growth and metastasis formation in longitudinal non-invasive high-resolution MR studies including using contrast agents comparable to human pancreatic cancer. This multidisciplinary environment enables radiologists, surgeons and physicians to further improve translational research and therapies of pancreatic cancer.</p

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works

    Studying neuroanatomy using MRI

    Full text link
    corecore