70 research outputs found

    Neonatal anthropometry: a tool to evaluate the nutritional status and predict early and late risks

    Get PDF
    Neonatal anthropometry is an inexpensive, noninvasive and convenient tool for bedside evaluation, especially in sick and fragile neonates. Anthropometry can be used in neonates as a tool for several purposes: diagnosis of foetal malnutrition and prediction of early postnatal complications; postnatal assessment of growth, body composition and nutritional status; prediction of long-term complications including metabolic syndrome; assessment of dysmorphology; and estimation of body surface. However, in this age group anthropometry has been notorious for its inaccuracy and the main concern is to make validated indices available. Direct measurements, such as body weight, length and body circumferences are the most commonly used measurements for nutritional assessment in clinical practice and in field studies. Body weight is the most reliable anthropometric measurement and therefore is often used alone in the assessment of the nutritional status, despite not reflecting body composition. Derived indices from direct measurements have been proposed to improve the accuracy of anthropometry. Equations based on body weight and length, mid-arm circumference/head circumference ratio, and upper-arm cross-sectional areas are among the most used derived indices to assess nutritional status and body proportionality, even though these indices require further validation for the estimation of body composition in neonates

    Spring and Asymptotic Boundary Condition Models for Study of Scattering by Thin Cylindrical Interphases

    Get PDF
    Specially designed fiber-matrix interphases are created in modern composites to improve fracture toughness, chemical compatibility and matching of thermal expansion coefficients between composite constituents [1, 2, 3]. Since the interphase transfers the load from matrix to fiber, the interphase elastic moduli, thickness and the quality of bonding with the surrounding fiber and matrix are essential in determining composite mechanical performance. Such interphase conditions can be sensed by ultrasonic waves due to strong interphase effects on wave scattering from fibers. However the interphase properties (elastic modulus and thickness) are in-situ parameters and are often difficult to define. One way to get around this is to introduce simplified boundary condition (B.C.) models to describe the displacement and stress fields across the interphase directly. In this paper we will address this problem with emphasis on spring and asymptotic B.C. models as a representation of a thin fiber-matrix interphase when studying wave scattering from fibers

    Quantitative imaging of 124I and 86Y with PET

    Get PDF
    The quantitative accuracy and image quality of positron emission tomography (PET) measurements with 124I and 86Y is affected by the prompt emission of gamma radiation and positrons in their decays, as well as the higher energy of the emitted positrons compared to those emitted by 18F. PET scanners cannot distinguish between true coincidences, involving two 511-keV annihilation photons, and coincidences involving one annihilation photon and a prompt gamma, if the energy of this prompt gamma is within the energy window of the scanner. The current review deals with a number of aspects of the challenge this poses for quantitative PET imaging. First, the effect of prompt gamma coincidences on quantitative accuracy of PET images is discussed and a number of suggested corrections are described. Then, the effect of prompt gamma coincidences and the increased singles count rates due to gamma radiation on the count rate performance of PET is addressed, as well as possible improvements based on modification of the scanner’s energy windows. Finally, the effect of positron energy on spatial resolution and recovery is assessed. The methods presented in this overview aim to overcome the challenges associated with the decay characteristics of 124I and 86Y. Careful application of the presented correction methods can allow for quantitatively accurate images with improved image contrast

    Cost-effectiveness of an intensive group training protocol compared to physiotherapy guideline care for sub-acute and chronic low back pain: design of a randomised controlled trial with an economic evaluation. [ISRCTN45641649]

    Get PDF
    BACKGROUND: Low back pain is a common disorder in western industrialised countries and the type of treatments for low back pain vary considerably. METHODS: In a randomised controlled trial the cost-effectiveness and cost-utility of an intensive group training protocol versus physiotherapy guideline care for sub-acute and chronic low back pain patients is evaluated. Patients with back pain for longer than 6 weeks who are referred to physiotherapy care by their general practitioner or medical specialist are included in the study. The intensive group training protocol combines exercise therapy with principles of behavioural therapy ("graded activity") and back school. This training protocol is compared to physiotherapy care according to the recently published Low Back Pain Guidelines of the Royal Dutch College for Physiotherapy. Primary outcome measures are general improvement, pain intensity, functional status, work absenteeism and quality of life. The direct and indirect costs will be assessed using cost diaries. Patients will complete questionnaires at baseline and 6, 13, 26 and 52 weeks after randomisation. DISCUSSION: No trials are yet available that have evaluated the effect of an intensive group training protocol including behavioural principles and back school in a primary physiotherapy care setting and no data on cost-effectiveness and cost-utility are available

    Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma

    Get PDF
    ADAPTeR is a prospective, phase II study of nivolumab (anti-PD-1) in 15 treatment-naive patients (115 multiregion tumor samples) with metastatic clear cell renal cell carcinoma (ccRCC) aiming to understand the mechanism underpinning therapeutic response. Genomic analyses show no correlation between tumor molecular features and response, whereas ccRCC-specific human endogenous retrovirus expression indirectly correlates with clinical response. T cell receptor (TCR) analysis reveals a significantly higher number of expanded TCR clones pre-treatment in responders suggesting pre-existing immunity. Maintenance of highly similar clusters of TCRs post-treatment predict response, suggesting ongoing antigen engagement and survival of families of T cells likely recognizing the same antigens. In responders, nivolumab-bound CD8+ T cells are expanded and express GZMK/B. Our data suggest nivolumab drives both maintenance and replacement of previously expanded T cell clones, but only maintenance correlates with response. We hypothesize that maintenance and boosting of a pre-existing response is a key element of anti-PD-1 mode of action

    The modular systems biology approach to investigate the control of apoptosis in Alzheimer's disease neurodegeneration

    Get PDF
    Apoptosis is a programmed cell death that plays a critical role during the development of the nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease (AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting in a remarkable cognitive decline, is the most common form of dementia with high social and economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate the mechanisms underlying the onset and progression of the disease is surely needed in order to develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death, apoptosis has been considered one of the most appealing therapeutic targets, however, due to the complexity of the molecular mechanisms involving the various triggering events and the many signaling cascades leading to cell death, a comprehensive understanding of this process is still lacking. Modular systems biology is a very effective strategy in organizing information about complex biological processes and deriving modular and mathematical models that greatly simplify the identification of key steps of a given process. This review aims at describing the main steps underlying the strategy of modular systems biology and briefly summarizes how this approach has been successfully applied for cell cycle studies. Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD, we present both a modular and a molecular model of neuronal apoptosis that suggest new insights on neuroprotection for this disease
    • …
    corecore