11,997 research outputs found

    Chaotic behaviors of stable second-order digital filters with two’s complement arithmetic

    Get PDF
    In this paper, the behaviors of stable second-order digital filters with two’s complement arithmetic are investigated. It is found that even though the poles are inside the unit circle and the trajectory converges to a fixed point on the phase plane, that fixed point is not necessarily the origin. That fixed point is found and the set of initial conditions corresponding to such trajectories is determined. This set of initial conditions is a set of polygons inside the unit square, whereas it is an ellipse for the marginally stable case. Also, it is found that the occurrence of limit cycles and chaotic fractal pattern on the phase plane can be characterized by the periodic and aperiodic behaviors of the symbolic sequences, respectively. The fractal pattern is polygonal, whereas it is elliptical for the marginally stable case

    Cytoplasmic and Nuclear Localization of TCTP in Normal and Cancer Cells

    Get PDF
    Objective. Intracellular localization of translationally controlled tumour protein (TCTP) was investigated in cancer cells. Methods. The expression and localization of TCTP were detected at 12 h, 24 h, 48 h, 60 h time points in culture of human hepatocarcinoma cell line HepG2, human cervical carcinoma cell line HeLa, and human normal liver cell line HL-7702 by immunofluorescence. Results. TCTP was expressed in both normal and tumor cells, and its localization changes at different time points. TCTP was mainly expressed in cytoplasm from 24 h to 48 h then expressed in both nucleus and cytoplasm at 60 h in HL-7702 cells. While in HepG2 cells, TCTP first localized at cell membrane within 24 h then at both nucleus and cytoplasm from 48 h to 60 h; TCTP localized at both nucleus and cytoplasm from 12 h to 60 h in Hela cells. Conclusion. The translocation of intracellular expression of TCTP in normal and tumor cells at different time points may pave a path to the studying of TCTP role in tumor growth

    StructVIO : Visual-inertial Odometry with Structural Regularity of Man-made Environments

    Full text link
    We propose a novel visual-inertial odometry approach that adopts structural regularity in man-made environments. Instead of using Manhattan world assumption, we use Atlanta world model to describe such regularity. An Atlanta world is a world that contains multiple local Manhattan worlds with different heading directions. Each local Manhattan world is detected on-the-fly, and their headings are gradually refined by the state estimator when new observations are coming. With fully exploration of structural lines that aligned with each local Manhattan worlds, our visual-inertial odometry method become more accurate and robust, as well as much more flexible to different kinds of complex man-made environments. Through extensive benchmark tests and real-world tests, the results show that the proposed approach outperforms existing visual-inertial systems in large-scale man-made environmentsComment: 15 pages,15 figure
    corecore