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SUMMARY

In this paper, the behaviors of stable second-order digital filters with two’s
complement arithmetic are investigated. It is found that even though the poles are
inside the unit circle and the trajectory converges to a fixed point on the phase plane,
that fixed point is not necessarily the origin. That fixed point is found and the set of
initial conditions corresponding to such trajectories is determined. This set of initial
conditions is a set of polygons inside the unit square, whereas it is an ellipse for the
marginally stable case. Also, it is found that the occurrence of limit cycles and chaotic
fractal pattern on the phase plane can be characterized by the periodic and aperiodic
behaviors of the symbolic sequences, respectively. The fractal pattern is polygonal,

whereas it is elliptical for the marginally stable case.
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1. INTRODUCTION

It is well known that chaotic behaviors may occur if second-order digital
filters with two’s complement arithmetic are operating in the marginally stable region
or in the unstable region [1,4,6-10,12,13]. Further results have been reported for
marginally stable third-order digital filters with two’s complement arithmetic [3,13],
as well as for marginally stable second-order digital filters with either a saturation-
type nonlinearity [2] or with a quantization-type nonlinearity [5,11].

However, we seldom design a ‘digital filter’ operating in the marginally stable
region or in the unstable region. Practically, we usually design digital filters operating
in the stable region. In this paper, chaotic and related behaviors of stable second-order

digital filters with two’s complement arithmetic are investigated.
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If overflow does not occur, the trajectory of stable second-order digital filters
with two’s complement arithmetic will converge to the origin on the phase plane. If
overflow occurs, will the trajectory converge? If so, what are the fixed points and the
set of initial conditions such that the trajectories will converge to those fixed points?
Besides, some researchers have reported that limit cycles may occur [14-19]. What is
the relationship between the occurrence of limiting cycles and the behaviors of
symbolic sequences? Moreover, are there any fractal patterns exhibited on the phase
plane? If so, what is the difference between the shapes of fractal patterns for the stable
and the marginally stable second-order digital filters?

In section 2, we will outline the notations which are essentially those used in
the existing literatures [1-13]. In section 3, the behaviors of stable second-order
digital filters with two’s complement arithmetic are presented. Comparisons between
the behaviors of stable and marginally stable second-order digital filters with two’s
complement arithmetic are discussed in section 4. Finally, concluding remarks are

presented in section 5.

2. NOTATIONS
The notations used in [1-13] are adopted as follows:

The system is defined as:

ot (o | PRI AP S | IR0 W

where x(k)= { ((tﬂelzs{( X,):—1<x <1,-1<x, <1} 2)
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s(k)e {~m,---,~1,0,1,---,m} where meZ* U{0} satisfying

-2-m-1<b-x,+a-Xx, <2-m+1 (5)

and f(x)=x—-2-n for 2-n-1<x<2-n+1and nez* U{0} (6)
For the linearized model of the system, if (a,b)e A={(a,b):b>-1 and

b<-a+land b<a+ 1}, the second-order digital filters are said to be operating in the



stable region. If b=-1 and |a|<2, or b=a+1 and -2<a<0, or b=-a+1 and

0<a<2, the second-order digital filters are said to be operating in the marginally
stable region. Otherwise, the second-order digital filters are said to be operating in the
unstable region.

Given an initial condition x(0)el® , a symbolic sequence
s=(s(0),5(1),---)e Y can be generated by the map S:1> — 3 . The set ¥, can be
partitioned into three subsets: X, ={s=(s(0),s(1)-~-) : s is periodic},

Z,= {s=(s(0),5(1),---): s is eventually periodic} and L, =%\ (Za U Zﬂ).

3. BEHAVIORS OF STABLE SECOND-ORDER DIGITAL FILTRS WITH
TWO’S COMPLEMENT ARITHMETIC
This section presents the behaviors of stable second-order digital filters with

two’s complement arithmetic as follows:

3.1.  Trajectory converging to the origin
In this section, the trajectory equation and the set of initial conditions for the
trajectory to converge to the origin are discussed as below:

Consider the case when the eigenvalues of matrix A are complex; let

b=-r>and a=2-r-cosé (7)
where r e R" and 0 € R (8)
If 0 <r <1, then the second-order digital filters are stable.
r-el” 0
Let D= : 9

{ 0 r-e’ } ©)

i0 j-0

RN
T=|Jr Jr (10)

o - E)

r-e? r-e .’

Then A=T-D-T" (11)

If overflow does not occur, then

k-1

et ). sinke-(sin(k-9)-x2(0)—r-sin((k—1)-49)-x1(0)) e

(sin((k +1)-0)-x,(0)=r -sin(k -0)-x, (0))

sin @



= lim x(k)=0 (13)

K—>+0
Hence, the state vector converges to zero and the phase trajectory converges to

the origin. Figure 1a shows an example of the corresponding phase portrait.

k

x(k)el’ = -(sin((k +1)-8)-x,(0)—r-sin(k -8)-x,(0)) <1, Yk >0 (14)

sin@

If sin((k +1)-8)> 0, then

r-sin(k -0)- x,(0)~ 1Y r-sin(k -0)- x,(0)+ [*1¢
C 1ox0)< ' (15)
sin((k + 1)- 9) ? sin((k + 1)- 49)
If sin((k +1)-8)< 0, then
r-sin(k-0)-x,(0)— |7 r-sin(k-0)-x,(0)+ |07
1> %,00)> ' (16)
sin((k +1)-0) ? sin((k +1)-0)
By defining |’ = {X(O)Z x(0)e 1% and |sin((k +1)-0)-%,(0)—r -sin(k -0)-x, (0] < si:1k0} )

Vk >0, we can characterize Ik2 as the region bounded between two parallel straight
lines in 1? described by the inequalities (15) or (16).

Although the slope of the two parallel straight lines for Ik2 is different for
different values of k, the y-intercepts of these two lines move away from the origin

as k increases. Hence, 3K >0 such that 1,> =17 for k>K . This implies that

+0 K’
JFK’'>0 such that K'<K and ﬂ Ik2 :ﬂ Ik2 c 1%. As a result, if overflow does not
k=0 k=0

K
2

occur, then X(O)e I~ . This set of initial conditions corresponds to a polygon on

k=0
the phase plane, and the number of sides of the polygon depends on the value of K',

as shown in figure 1b.

3.2.  Trajectory converging to a fixed point not at the origin

In this section, the trajectory equation and the set of initial conditions when
the trajectory converges to a fixed point not at the origin are developed and discussed
as below:

x(k+1)=A-x(k)+B-s(k), vk >0 (17)



If S(k)= s, for Vk >0, then (18)

k-1
x(k)=A*-x(0)+ > A"-B-s,
n=0

k-1

' (sin(k-6)-%,(0)—r-sin((k —1)-0)- x,(0))
—_| sSim

re . .

L (sinl(k+1)-0)-x,(0)-r sink-0)-,(0) ksl (19)
. 2-s, [sin@—r*"sin(k-0)+r*sin((k ~1)-0)
sin@-(1-2-r-cos@+r?) | sind—r*-sin((k +1)-6)+r" -sin(k - 0)

) . 2-3 1
Since 0 <r <1, we have lim x(k)= : 5 {} (20)

ko0 1-2-r-cos@+r- |1
25 1

L * = 0 . 21
otx 1-2-r-cos@+r? [J @1

Then x(k) will converge to x*. If s, # 0, then x* # 0. Hence, the trajectory
converges to a fixed point not at the origin. Figure 2a shows an example of the
corresponding phase portrait. In fact, when s, =0, then x =0. This reduces to the

case described in section 3.1.

k

x(k)e 12 = | (sin((k +1)-0)-x,(0)—r -sin(k - 0)-x, (0)) +

siné

,Vk=0 (22)
25,

sinté?-(1—2-r-cos9+l’2

)-(sinH —r*-sin((k +1)-0)+r*" -sin(k 6’)1 <1

If sin((k +1)-8)> 0, then

_ sirnk6’ _1_2.r2..czos¢9+r2 '(Sirnke—Sin((k+1)'9)+r'sm(k'9)j+r'Sin(k'e)'Xl(O)
sin((k + 1)- 9)
<x,(0)< 23
sin @ 2.30 sin @ ) ' ‘
r _1_2'|’~COSQ+|’2. ¥ —sm((k+1)-0)+r-sm(k-0) +r'Sll'l(k'6’)-X1(0)

sin((k +1)-0)
If sin((k +1)-8)< 0, then



sin @ 2.5, (sin@

L k—sin((k+1)~0)+r-sin(k~0)j+r-sin(k-é?)-xl(o)
—_— . .COS

sin((k +1)-6)
> x,(0)> (24)

sin@ 2-s, (sin@_Sin((k+1),@)+r.sin(k.0)j+r~sin(k-6’)~xl(0)

r

r* | 1-2-r-cos@+r* \ r*

sin((k + 1)- 9)

k

-(sin((k +1)-8)-x,(0)—r -sin(k - 8)- x,(0)) +

By defining 1} * = {x(O): x(0)e I” and
Sin

Singi(l_zz"rs“)cosa_krz)-(siné?—rk-sin((k+1)-0)+rk”-sin(k-@)*<l} , Vk>0 and

Vs, #0, we can characterize ||Q,s(,2 as the region bounded between two parallel

straight lines in 1° described by the inequalities (23) or (24). Similarly, HK;J >0

+oo K,
such that ﬂ'k,502 :ﬂlk,so2 c1?. As a result, if s(k)=s,#0 for Yk>0, then
k=0 k=0

K,
x(O)e U ﬂ I,L,SOZ . This set of initial conditions also corresponds to some polygons
Vsy#0 k=0

on the phase plane, with each polygon associated with a particular value of S, and the

number of sides of the polygon depends on the value of K{ , as shown in figure 2b.

3.3.  Occurrence of limit cycles
In this section, the relationship between the occurrence of limit cycles and the

periodic behaviors of the symbolic sequences is developed and discussed as follows:

M-1
Vp,M eZ" and Vk >0, x(k+p-M)=A"" -x(k)+ pZAp'M"l_” -B-s(k+n) (25)

n=0

If 3k, >0 and IM €Z" such that s(k)=s(k + M) for Vk >k, , that is sex, UZ,,

then VpeZ” (26)

-1

=l

M-1
x(ko+p-M)=T-D"‘M~T“~x(ko)+ZT'DM_l_n( Dm‘M]'T_I‘B‘S(kwn) @7)
n—0

0
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=T.-D"M.T'. (k )+

rM—l—n.eJ(Mln 1— rpM erMH
(s ) 0 ) (28)
nZ:(;T‘ pM-in _efjA(Mflfn}e,(l_rpAM ,efj-p-Mﬁ) T 'B’S(k0+n)
0 1-rM.giM?
rM—l—n .ej~(M—l—n)9
'S 1—rM.gM? 0 =
plggcx (ke +p-M)=>T- o goituaino | T -B-s(k, +n)(29)
n=0
0 1-rM.g M
rM—l—n .ej-(M—l—n)e
N 1—rM.giM?e 0 =
Let x, = ZT' pM-lon | g-i{M-1-n)o T 'B'S(ko + n) (30)
0 1-rV .M
n-1
By defining x," =A"-x,"+ Y A" B-s(k, +m) for n=12,---,M 1 (31)
m=0

then x(k) will converge to a periodic sequence {xo*,xl*,-.-xM_l*}. Hence, limit cycles
with period M will occur. Figure 3a and figure 3b shows an example of the

corresponding phase portrait and the set of initial conditions that generate limiting

cycles, respectively.

3.4. Chaotic fractal pattern
In this section, we demonstrate by simulation that when the symbolic

sequences are aperiodic, that is, s€ X , stable second-order digital filters with two’s

complement arithmetic may also exhibit a chaotic fractal pattern on the phase plane.
The fractal pattern is polygonal, whereas it is elliptical for the marginally stable case.
Figure 4a shows an example of the corresponding phase portrait.

Define =, = {x(0):s(k)=0,vk >k, }. This set is the set of initial conditions

that the state trajectories will converge to zero. When k, =0, we have found that

K

By = ﬂ > . Similarly, define Z, = {X(O)Z s(k)=s, #0,vk > ké} This set is the set of
k=0

initial conditions that the state trajectories will converge to a fixed point. When

K,
ky=0 , we have found that E, = U ﬂli:’sn2 . Likewise, we define

Vsy#0 k=0

[1]

w = {x(0):s(k)=s(k + M), fork > kM and for M >1}. This set is the set of initial



conditions that generates limiting cycles. If 2, =17\ UEM #© , this implies that
M =0

there exists some initial conditions which may not result in the convergence of the
state trajectories nor the occurrence of limiting cycles. Under this condition, chaotic

behaviors may occur.

Since Vk >0, x(k) will not fall into the set UEM , otherwise, 3k, >0 such
M >0

that x(ko)e UEM . As a result, the phase portrait is inside Z, = 17\ UEM . This may

M=0 M =0

correspond to polygonal fractal patterns because Z,, VM >0 are all polygons.

Figure 4b shows an example of the set of initial conditions that gives polygonal

fractal patterns.

4. COMPARISONS BETWEEN THE BAHAVIORS OF STABLE AND
MARGINALLY STABLE SECOND-ORDER DIGITAL FILTERS WITH TWO’S
COMPLEMENT ARITHMETIC
Table 1 summarizes the differences on the behaviors of the state trajectories

x(k) between stable and marginally stable second-order digital filters with two’s

complement arithmetic. Table 2 summarizes the corresponding differences on the
phase portrait. Table 3 summarizes the differences on the sets of initial conditions for
the occurrence of various symbolic sequences between stable and marginally stable

second-order digital filters with two’s complement arithmetic.

s(k)=0, s(k)=s,#0, | sex, UZ, sex,
vk >0 vk>0
state trajectory | oscillates with | oscillates with | oscillates with chaotic
x(k) of its natural its natural harmonic

marginally | frequency, and | frequency, and | frequencies

stable second- |the DC value=0 | the DC value+0 2-7-n

, for
order digital
filters with n=0,1,---,M -1
two’s
complement
arithmetic




state trajectory

x(k) of stable

second-order

digital filters
with two’s
complement

arithmetic

converges to

Z€1ro

converges to a

non-zero value

limit cycles
occur with

period M

chaotic

Table 1. Comparison of the behaviors of state trajectories x(k) between stable and

marginally stable second-order digital filters with two’s complement arithmetic, for

the initial conditions in Table 3.

s(k)=0,
vk >0

s(k)=s, =0,
vk>0

sex, UZ,

seX

phase portrait of

single ellipse

several ellipses

several ellipses

elliptical fractal

stable second-
order digital
filters with
two’s
complement

arithmetic

origin

fixed point, and
the fixed point
is not at the

origin

several fixed
points, and
those fixed
points are not at

the origin

marginally centered at the | with same size, | with different pattern
stable second- origin and all the |[sizes, and all the
order digital centers are not | centers are not
filters with at the origin at the origin
two’s
complement
arithmetic
phase portrait of | converges to the| convergestoa | converges to polygonal

fractal pattern

Table 2. Comparison of the phase portraits between stable and marginally stable

second-order digital filters with two’s complement arithmetic, for the initial

conditions in Table 3.




s(k)=0,
vk >0

s(k)=s,#0,
vk>0

sex, Ux,

SseX

set of initial

single ellipse

several ellipses

several ellipses

elliptical fractal

conditions of | centered at the | with same size, | with different pattern

marginally origin and all the [sizes, and all the
stable second- centers are not | centers are not

order digital at the origin at the origin

filters with

two’s

complement

arithmetic

set of initial | single polygon several several polygonal
conditions of | centered at the | polygons with | polygons with | fractal pattern

stable second-
order digital
filters with
two’s
complement

arithmetic

origin

same size, and
all the centers
are not at the

origin

different sizes,
and all the
centers are not

at the origin

Table 3. Comparison of the sets of initial conditions for the occurrence of various
symbolic sequences between stable and marginally stable second-order digital filters

with two’s complement arithmetic.

5. CONCLUDING REMARKS

In this paper, we have studied the behaviors of stable second-order digital
filters with two’s complement arithmetic. It is found that the state vector of stable
second-order digital filters with two’s complement arithmetic may not converge to
zero. The sets of initial conditions that the trajectories converge to those fixed points
are polygons inside the unit square. Also, it is found that the occurrence of limit
cycles and chaotic fractal patterns on the phase plane can be characterized by the
periodic and aperiodic behaviors of the symbolic sequences, respectively. The fractal

pattern is polygonal, whereas it is elliptical for the marginally stable case.
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Figure 1. (a) The phase portrait of stable second-order digital filters with two’s

0.5
complement arithmetic, r =0.9999, 8 =0.75-7 and x(O):{ 0 5] (b) The set of

initial conditions of the corresponding digital filters when s(k)=0 vk >0.
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(a)
f

Figure 2. (a) The phase portrait of stable second-order digital filters with two’s

0.8
complement arithmetic, r =0.9999, 6 =0.75-7 and X(0)=|:O 6} . (b) The set of

initial conditions of the corresponding digital filters when s(k)=s, #0 Vk>0.
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Figure 3. (a) The phase portrait of stable second-order digital filters with two’s
0.8
complement arithmetic, r =0.9999, 8 =0.75-z and x(0)= {0 6} . (b) The set of
initial conditions of the corresponding digital filters when s(k)=s(k + M) vk >0.
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Figure 4. (a) The phase portrait of stable second-order digital filters with two’s

-1
complement arithmetic, r=0.9999 , =0.75-7 and x(0)={ 0} . (b) The set of

initial conditions of the corresponding digital filters when s(k) is aperiodic.
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