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SUMMARY 

In this paper, the behaviors of stable second-order digital filters with two’s 

complement arithmetic are investigated. It is found that even though the poles are 

inside the unit circle and the trajectory converges to a fixed point on the phase plane, 

that fixed point is not necessarily the origin. That fixed point is found and the set of 

initial conditions corresponding to such trajectories is determined. This set of initial 

conditions is a set of polygons inside the unit square, whereas it is an ellipse for the 

marginally stable case. Also, it is found that the occurrence of limit cycles and chaotic 

fractal pattern on the phase plane can be characterized by the periodic and aperiodic 

behaviors of the symbolic sequences, respectively. The fractal pattern is polygonal, 

whereas it is elliptical for the marginally stable case. 
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1. INTRODUCTION 

It is well known that chaotic behaviors may occur if second-order digital 

filters with two’s complement arithmetic are operating in the marginally stable region 

or in the unstable region [1,4,6-10,12,13]. Further results have been reported for 

marginally stable third-order digital filters with two’s complement arithmetic [3,13], 

as well as for marginally stable second-order digital filters with either a saturation-

type nonlinearity [2] or with a quantization-type nonlinearity [5,11]. 

However, we seldom design a ‘digital filter’ operating in the marginally stable 

region or in the unstable region. Practically, we usually design digital filters operating 

in the stable region. In this paper, chaotic and related behaviors of stable second-order 

digital filters with two’s complement arithmetic are investigated. 
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If overflow does not occur, the trajectory of stable second-order digital filters 

with two’s complement arithmetic will converge to the origin on the phase plane. If 

overflow occurs, will the trajectory converge? If so, what are the fixed points and the 

set of initial conditions such that the trajectories will converge to those fixed points? 

Besides, some researchers have reported that limit cycles may occur [14-19]. What is 

the relationship between the occurrence of limiting cycles and the behaviors of 

symbolic sequences? Moreover, are there any fractal patterns exhibited on the phase 

plane? If so, what is the difference between the shapes of fractal patterns for the stable 

and the marginally stable second-order digital filters? 

In section 2, we will outline the notations which are essentially those used in 

the existing literatures [1-13]. In section 3, the behaviors of stable second-order 

digital filters with two’s complement arithmetic are presented. Comparisons between 

the behaviors of stable and marginally stable second-order digital filters with two’s 

complement arithmetic are discussed in section 4. Finally, concluding remarks are 

presented in section 5. 

 

2. NOTATIONS 

The notations used in [1-13] are adopted as follows: 

The system is defined as: 
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( ) { }mmks ,,1,0,1,, LL −−∈  where { }0Ζ U+∈m  satisfying 

 1212 21 +⋅<⋅+⋅≤−⋅− mxaxbm  (5) 

and ( ) nxxf ⋅−= 2  for 1212 +⋅<≤−⋅ nxn  and { }0Ζ U+∈n  (6) 

For the linearized model of the system, if ( ) ( ){ 1:,, −>≡Δ∈ bbaba  and 

1+−< ab  and }1+< ab , the second-order digital filters are said to be operating in the 
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stable region. If 1−=b  and 2<a , or 1+= ab  and 02 <<− a , or 1+−= ab  and 

20 << a , the second-order digital filters are said to be operating in the marginally 

stable region. Otherwise, the second-order digital filters are said to be operating in the 

unstable region. 

Given an initial condition ( ) 20 I∈x , a symbolic sequence 

( ) ( )( ) ∑∈= L,1,0 sss  can be generated by the map ∑→2:S I . The set ∑ can be 

partitioned into three subsets: ( ) ( )( ){ L,1,0 sss ==Σα : s is periodic}, 

( ) ( )( ){ L,1,0 sss ==Σβ : s is eventually periodic} and ( )βαγ ΣΣΣ=Σ U\ . 

 

3. BEHAVIORS OF STABLE SECOND-ORDER DIGITAL FILTRS WITH 

TWO’S COMPLEMENT ARITHMETIC 

This section presents the behaviors of stable second-order digital filters with 

two’s complement arithmetic as follows: 

 

3.1. Trajectory converging to the origin 

In this section, the trajectory equation and the set of initial conditions for the 

trajectory to converge to the origin are discussed as below: 

Consider the case when the eigenvalues of matrix A  are complex; let 
2rb −=  and θcos2 ⋅⋅= ra  (7) 

where +ℜ∈r  and ℜ∈θ  (8) 

If 10 << r , then the second-order digital filters are stable. 
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If overflow does not occur, then 
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( ) 0x =⇒
+∞→

k
k
lim  (13) 

Hence, the state vector converges to zero and the phase trajectory converges to 

the origin. Figure 1a shows an example of the corresponding phase portrait. 
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If ( )( ) 01sin <⋅+ θk , then 
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By defining ( ) ( ) ( )( ) ( ) ( ) ( )
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xkrxkII θθθ sin0sin01sin and 0:0 12

22 xx , 

0≥∀k , we can characterize 2
kI  as the region bounded between two parallel straight 

lines in 2I  described by the inequalities (15) or (16). 

Although the slope of the two parallel straight lines for 2
kI  is different for 

different values of k , the y-intercepts of these two lines move away from the origin 

as k  increases. Hence, 0≥∃K  such that 22 IIk =  for Kk ≥ . This implies that 

0≥′∃K  such that KK ≤′  and 2
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K
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20x . This set of initial conditions corresponds to a polygon on 

the phase plane, and the number of sides of the polygon depends on the value of K ′ , 

as shown in figure 1b. 

 

3.2. Trajectory converging to a fixed point not at the origin 

In this section, the trajectory equation and the set of initial conditions when 

the trajectory converges to a fixed point not at the origin are developed and discussed 

as below: 

( ) ( ) ( )kskk ⋅+⋅=+ BxAx 1 , 0≥∀k  (17) 
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If ( ) 0sks =  for 0≥∀k , then (18) 
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Then ( )kx  will converge to ∗x . If 00 ≠s , then 0x ≠∗ . Hence, the trajectory 

converges to a fixed point not at the origin. Figure 2a shows an example of the 

corresponding phase portrait. In fact, when 00 =s , then 0x =∗ . This reduces to the 

case described in section 3.1. 
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If ( )( ) 01sin <⋅+ θk , then 
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3.3. Occurrence of limit cycles 

In this section, the relationship between the occurrence of limit cycles and the 

periodic behaviors of the symbolic sequences is developed and discussed as follows: 
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then ( )kx  will converge to a periodic sequence { }∗−
∗∗

110 ,, Mxxx L . Hence, limit cycles 

with period M  will occur. Figure 3a and figure 3b shows an example of the 

corresponding phase portrait and the set of initial conditions that generate limiting 

cycles, respectively. 

 

3.4. Chaotic fractal pattern 

In this section, we demonstrate by simulation that when the symbolic 

sequences are aperiodic, that is, γΣ∈s , stable second-order digital filters with two’s 

complement arithmetic may also exhibit a chaotic fractal pattern on the phase plane. 

The fractal pattern is polygonal, whereas it is elliptical for the marginally stable case. 

Figure 4a shows an example of the corresponding phase portrait. 
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conditions that generates limiting cycles. If Ø\
0

2
3 ≠Ξ=Ξ

≥
U
M

MI , this implies that 

there exists some initial conditions which may not result in the convergence of the 

state trajectories nor the occurrence of limiting cycles. Under this condition, chaotic 

behaviors may occur. 

Since 0≥∀k , ( )kx  will not fall into the set U
0≥

Ξ
M

M , otherwise, 00 ≥∃k  such 

that ( ) U
0

0
≥

Ξ∈
M

Mkx . As a result, the phase portrait is inside U
0

2
3 \

≥

Ξ=Ξ
M

MI . This may 

correspond to polygonal fractal patterns because MΞ  0≥∀M  are all polygons. 

Figure 4b shows an example of the set of initial conditions that gives polygonal 

fractal patterns. 

 

4. COMPARISONS BETWEEN THE BAHAVIORS OF STABLE AND 

MARGINALLY STABLE SECOND-ORDER DIGITAL FILTERS WITH TWO’S 

COMPLEMENT ARITHMETIC 

Table 1 summarizes the differences on the behaviors of the state trajectories 

( )kx  between stable and marginally stable second-order digital filters with two’s 

complement arithmetic. Table 2 summarizes the corresponding differences on the 

phase portrait. Table 3 summarizes the differences on the sets of initial conditions for 

the occurrence of various symbolic sequences between stable and marginally stable 

second-order digital filters with two’s complement arithmetic. 

 ( ) 0=ks , 

0≥∀k  

( ) 00 ≠= sks , 

0≥∀k  

βα ΣΣ∈ Us  γΣ∈s  

state trajectory 

( )kx  of 

marginally 

stable second-

order digital 

filters with 

two’s 

complement 

arithmetic 

oscillates with 

its natural 

frequency, and 

the DC value=0

oscillates with 

its natural 

frequency, and 

the DC value≠0

oscillates with 

harmonic 

frequencies 

M
n⋅⋅π2 , for 

1,,1,0 −= Mn L  

chaotic 
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state trajectory 

( )kx  of stable 

second-order 

digital filters 

with two’s 

complement 

arithmetic 

converges to 

zero 

converges to a 

non-zero value

limit cycles 

occur with 

period M  

chaotic 

Table 1. Comparison of the behaviors of state trajectories ( )kx  between stable and 

marginally stable second-order digital filters with two’s complement arithmetic, for 

the initial conditions in Table 3. 

 

 ( ) 0=ks , 

0≥∀k  

( ) 00 ≠= sks , 

0≥∀k  

βα ΣΣ∈ Us  γΣ∈s  

phase portrait of 

marginally 

stable second-

order digital 

filters with 

two’s 

complement 

arithmetic 

single ellipse 

centered at the 

origin 

several ellipses 

with same size, 

and all the 

centers are not 

at the origin 

several ellipses 

with different 

sizes, and all the 

centers are not 

at the origin 

elliptical fractal 

pattern 

phase portrait of 

stable second-

order digital 

filters with 

two’s 

complement 

arithmetic 

converges to the 

origin 

converges to a 

fixed point, and 

the fixed point  

is not at the 

origin 

converges to 

several fixed 

points, and 

those fixed 

points are not at 

the origin 

polygonal 

fractal pattern 

Table 2. Comparison of the phase portraits between stable and marginally stable 

second-order digital filters with two’s complement arithmetic, for the initial 

conditions in Table 3. 
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 ( ) 0=ks , 

0≥∀k  

( ) 00 ≠= sks , 

0≥∀k  

βα ΣΣ∈ Us  γΣ∈s  

set of initial 

conditions of 

marginally 

stable second-

order digital 

filters with 

two’s 

complement 

arithmetic 

single ellipse 

centered at the 

origin 

several ellipses 

with same size, 

and all the 

centers are not 

at the origin 

several ellipses 

with different 

sizes, and all the 

centers are not 

at the origin 

elliptical fractal 

pattern 

set of initial 

conditions of 

stable second-

order digital 

filters with 

two’s 

complement 

arithmetic 

single polygon 

centered at the 

origin 

several 

polygons with 

same size, and 

all the centers 

are not at the 

origin 

several 

polygons with 

different sizes, 

and all the 

centers are not 

at the origin 

polygonal 

fractal pattern 

Table 3. Comparison of the sets of initial conditions for the occurrence of various 

symbolic sequences between stable and marginally stable second-order digital filters 

with two’s complement arithmetic. 

 

5.  CONCLUDING REMARKS 

In this paper, we have studied the behaviors of stable second-order digital 

filters with two’s complement arithmetic. It is found that the state vector of stable 

second-order digital filters with two’s complement arithmetic may not converge to 

zero. The sets of initial conditions that the trajectories converge to those fixed points 

are polygons inside the unit square. Also, it is found that the occurrence of limit 

cycles and chaotic fractal patterns on the phase plane can be characterized by the 

periodic and aperiodic behaviors of the symbolic sequences, respectively. The fractal 

pattern is polygonal, whereas it is elliptical for the marginally stable case. 
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Figure 1. (a) The phase portrait of stable second-order digital filters with two’s 

complement arithmetic, 9999.0=r , πθ ⋅= 75.0  and ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

=
5.0

5.0
0x . (b) The set of 

initial conditions of the corresponding digital filters when ( ) 0=ks  0≥∀k . 
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Figure 2. (a) The phase portrait of stable second-order digital filters with two’s 

complement arithmetic, 9999.0=r , πθ ⋅= 75.0  and ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

6.0
8.0

0x . (b) The set of 

initial conditions of the corresponding digital filters when ( ) 00 ≠= sks  0≥∀k . 
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Figure 3. (a) The phase portrait of stable second-order digital filters with two’s 

complement arithmetic, 9999.0=r , πθ ⋅= 75.0  and ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

6.0
8.0

0x . (b) The set of 

initial conditions of the corresponding digital filters when ( ) ( )Mksks +=  0≥∀k .
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Figure 4. (a) The phase portrait of stable second-order digital filters with two’s 

complement arithmetic, 9999.0=r , πθ ⋅= 75.0  and ( ) ⎥
⎦

⎤
⎢
⎣

⎡−
=

0
1

0x . (b) The set of 

initial conditions of the corresponding digital filters when ( )ks  is aperiodic. 


