384 research outputs found

    Frugal Optimization for Cost-related Hyperparameters

    Full text link
    The increasing demand for democratizing machine learning algorithms calls for hyperparameter optimization (HPO) solutions at low cost. Many machine learning algorithms have hyperparameters which can cause a large variation in the training cost. But this effect is largely ignored in existing HPO methods, which are incapable to properly control cost during the optimization process. To address this problem, we develop a new cost-frugal HPO solution. The core of our solution is a simple but new randomized direct-search method, for which we prove a convergence rate of O(dK)O(\frac{\sqrt{d}}{\sqrt{K}}) and an O(dϵ2)O(d\epsilon^{-2})-approximation guarantee on the total cost. We provide strong empirical results in comparison with state-of-the-art HPO methods on large AutoML benchmarks.Comment: 29 pages (including supplementary appendix

    FairAutoML: Embracing Unfairness Mitigation in AutoML

    Full text link
    In this work, we propose an Automated Machine Learning (AutoML) system to search for models not only with good prediction accuracy but also fair. We first investigate the necessity and impact of unfairness mitigation in the AutoML context. We establish the FairAutoML framework. The framework provides a novel design based on pragmatic abstractions, which makes it convenient to incorporate existing fairness definitions, unfairness mitigation techniques, and hyperparameter search methods into the model search and evaluation process. Following this framework, we develop a fair AutoML system based on an existing AutoML system. The augmented system includes a resource allocation strategy to dynamically decide when and on which models to conduct unfairness mitigation according to the prediction accuracy, fairness, and resource consumption on the fly. Extensive empirical evaluation shows that our system can achieve a good `fair accuracy' and high resource efficiency.Comment: 18 pages (including 6 pages of appendixes

    Seamlessly Unifying Attributes and Items: Conversational Recommendation for Cold-Start Users

    Full text link
    Static recommendation methods like collaborative filtering suffer from the inherent limitation of performing real-time personalization for cold-start users. Online recommendation, e.g., multi-armed bandit approach, addresses this limitation by interactively exploring user preference online and pursuing the exploration-exploitation (EE) trade-off. However, existing bandit-based methods model recommendation actions homogeneously. Specifically, they only consider the items as the arms, being incapable of handling the item attributes, which naturally provide interpretable information of user's current demands and can effectively filter out undesired items. In this work, we consider the conversational recommendation for cold-start users, where a system can both ask the attributes from and recommend items to a user interactively. This important scenario was studied in a recent work. However, it employs a hand-crafted function to decide when to ask attributes or make recommendations. Such separate modeling of attributes and items makes the effectiveness of the system highly rely on the choice of the hand-crafted function, thus introducing fragility to the system. To address this limitation, we seamlessly unify attributes and items in the same arm space and achieve their EE trade-offs automatically using the framework of Thompson Sampling. Our Conversational Thompson Sampling (ConTS) model holistically solves all questions in conversational recommendation by choosing the arm with the maximal reward to play. Extensive experiments on three benchmark datasets show that ConTS outperforms the state-of-the-art methods Conversational UCB (ConUCB) and Estimation-Action-Reflection model in both metrics of success rate and average number of conversation turns.Comment: TOIS 202

    2D materials for nanoelectronics: A first-principles investigation

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    HyperTime: Hyperparameter Optimization for Combating Temporal Distribution Shifts

    Full text link
    In this work, we propose a hyperparameter optimization method named \emph{HyperTime} to find hyperparameters robust to potential temporal distribution shifts in the unseen test data. Our work is motivated by an important observation that it is, in many cases, possible to achieve temporally robust predictive performance via hyperparameter optimization. Based on this observation, we leverage the `worst-case-oriented' philosophy from the robust optimization literature to help find such robust hyperparameter configurations. HyperTime imposes a lexicographic priority order on average validation loss and worst-case validation loss over chronological validation sets. We perform a theoretical analysis on the upper bound of the expected test loss, which reveals the unique advantages of our approach. We also demonstrate the strong empirical performance of the proposed method on multiple machine learning tasks with temporal distribution shifts.Comment: 19 pages, 7 figure
    corecore