141 research outputs found

    Entanglement dynamics of a superconducting phase qubit coupled to a two-level system

    Get PDF
    We report the observation and quantitative characterization of driven and spontaneous oscillations of quantum entanglement, as measured by concurrence, in a bipartite system consisting of a macroscopic Josephson phase qubit coupled to a microscopic two-level system. The data clearly show the behavior of entanglement dynamics such as sudden death and revival, and the effect of decoherence and ac driving on entanglement.Comment: 6 pages,4 figure

    Tunable Quantum Beam Splitters for Coherent Manipulation of a Solid-State Tripartite Qubit System

    Get PDF
    Coherent control of quantum states is at the heart of implementing solid-state quantum processors and testing quantum mechanics at the macroscopic level. Despite significant progress made in recent years in controlling single- and bi-partite quantum systems, coherent control of quantum wave function in multipartite systems involving artificial solid-state qubits has been hampered due to the relatively short decoherence time and lacking of precise control methods. Here we report the creation and coherent manipulation of quantum states in a tripartite quantum system, which is formed by a superconducting qubit coupled to two microscopic two-level systems (TLSs). The avoided crossings in the system's energy-level spectrum due to the qubit-TLS interaction act as tunable quantum beam splitters of wave functions. Our result shows that the Landau-Zener-St\"{u}ckelberg interference has great potential in the precise control of the quantum states in the tripartite system.Comment: 24 pages, 3 figure

    Detection of small single-cycle signals by stochastic resonance using a bistable superconducting quantum interference device

    Get PDF
    We propose and experimentally demonstrate detecting small single-cycle and few-cycle signals by using the symmetric double-well potential of a radio frequency superconducting quantum interference device (rf-SQUID). We show that the response of this bistable system to single- and few-cycle signals has a non-monotonic dependence on the noise strength. The response, measured by the probability of transition from initial potential well to the opposite one, becomes maximum when the noise-induced transition rate between the two stable states of the rf-SQUID is comparable to the signal frequency. Comparison to numerical simulations shows that the phenomenon is a manifestation of stochastic resonance.Comment: 5 pages 3 figure

    ContraBERT: Enhancing Code Pre-trained Models via Contrastive Learning

    Full text link
    Large-scale pre-trained models such as CodeBERT, GraphCodeBERT have earned widespread attention from both academia and industry. Attributed to the superior ability in code representation, they have been further applied in multiple downstream tasks such as clone detection, code search and code translation. However, it is also observed that these state-of-the-art pre-trained models are susceptible to adversarial attacks. The performance of these pre-trained models drops significantly with simple perturbations such as renaming variable names. This weakness may be inherited by their downstream models and thereby amplified at an unprecedented scale. To this end, we propose an approach namely ContraBERT that aims to improve the robustness of pre-trained models via contrastive learning. Specifically, we design nine kinds of simple and complex data augmentation operators on the programming language (PL) and natural language (NL) data to construct different variants. Furthermore, we continue to train the existing pre-trained models by masked language modeling (MLM) and contrastive pre-training task on the original samples with their augmented variants to enhance the robustness of the model. The extensive experiments demonstrate that ContraBERT can effectively improve the robustness of the existing pre-trained models. Further study also confirms that these robustness-enhanced models provide improvements as compared to original models over four popular downstream tasks

    Quantum Dynamics of a Microwave Driven Superconducting Phase Qubit Coupled to a Two-Level System

    Get PDF
    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.Comment: 6 pages, 3 figure

    Observation of coherent oscillation in single-passage Landau-Zener transitions

    Get PDF
    Landau-Zener transition (LZT) has been explored in a variety of physical systems for coherent population transfer between different quantum states. In recent years, there have been various proposals for applying LZT to quantum information processing because when compared to the methods using ac pulse for coherent population transfer, protocols based on LZT are less sensitive to timing errors. However, the effect of finite range of qubit energy available to LZT based state control operations has not been thoroughly examined. In this work, we show that using the well-known Landau-Zener formula in the vicinity of an avoided energy-level crossing will cause considerable errors due to coherent oscillation of the transition probability in a single-passage LZT experiment. The data agree well with the numerical simulations which take the transient dynamics of LZT into account. These results not only provide a closer view on the issue of finite-time LZT but also shed light on its effects on the quantum state manipulation.Comment: 10 pages,5 figure

    Landau-Zener-St\"{u}ckelberg Interference of Microwave Dressed States of a Superconducting Phase Qubit

    Full text link
    We present the first observation of Landau-Zener-St\"{u}ckelberg (LZS) interference of the dressed states arising from an artificial atom, a superconducting phase qubit, interacting with a microwave field. The dependence of LZS interference fringes on various external parameters and the initial state of the qubit agrees quantitatively very well with the theoretical prediction. Such LZS interferometry between the dressed states enables us to control the quantum states of a tetrapartite solid-state system with ease, demonstrating the feasibility of implementing efficient multipartite quantum logic gates with this unique approach.Comment: 6 pages, 3 figures To appear in Physical Review B(R

    Entanglement dynamics of a superconducting phase qubit coupled to a two-level system

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1103/PhysRevB.86.064502.We report the observation and quantitative characterization of driven and spontaneous oscillations of quantum entanglement, as measured by concurrence, in a bipartite system consisting of a macroscopic Josephson phase qubit coupled to a microscopic two-level system. The data clearly show the behavior of entanglement dynamics such as sudden death and revival, and the effect of decoherence and ac driving on entanglement

    Quantum interference induced by multiple Landau-Zener transitions in a strongly driven rf-SQUID qubit

    Full text link
    We irradiated an rf-SQUID qubit with large-amplitude and high frequency electromagnetic field. Population transitions between macroscopic distinctive quantum states due to Landau-Zener transitions at energy-level avoided crossings were observed. The qubit population on the excited states as a function of flux detuning and microwave power exhibits interference patterns. Some novel features are found in the interference and a model based on rate equations can well address the features.Comment: 6 pages, 3 figures, comments are welcom
    • …
    corecore