42 research outputs found

    Electromyographic responses to acupuncture point stimulation of the face

    Get PDF
    published_or_final_versio

    Th1 and Th2 cytokines in saliva from chronic periodontitis patients

    Get PDF
    published_or_final_versio

    Curcumin inhibits cell proliferation of MDA-MB-231 and BT-483 breast cancer cells mediated by down-regulation of NFκB, cyclinD and MMP-1 transcription

    Get PDF
    Curcumin, an active constituent of turmeric, has been shown to possess inhibitory effect of cell proliferation and induction of apoptosis towards a board range of tumors. Cell inhibition activities of curcumin are behaved differently in various cell types. To investigate the mechanism basis for the cell inhibition of curcumin on breast cancer cell lines, we examine curcumin effect on NFκB, cell cycle regulatory proteins and matrix metalloproteinases (MMPs) in two breast cancer cell lines (MDA-MB-231 and BT-483). Cell proliferation was performed by water soluble tetrazolium WST-1 assay. The effect of curcumin's on the activity of matrix metalloproteinase-1, 3, 9 were analyzed by RT-PCR. Cell cycle regulatory protein including cyclin D1, CDK4 and p21 were examined by immunochemistry. The expressions of NFκB in breast cancer cells treated with curcumin were studied by immunochemistry and western blot. The results from WST-1 cell proliferation assay showed that curcumin exhibited the anti-proliferation effect on MDA-MB-231 and BT-483 cells in a time- and dose-dependent manner. In response to the treatment, while, the expression of cyclin D1 had declined in MDA-MB-231 and the expression of CDK4 in BT-483 had declined. MMP1 mRNA expression in BT-483 and MDA-MB-231 had significantly decreased in curcumin treatment group compared with control group. Our finding extrapolates the antitumor activity of curcumin in mediating the breast cancer cell proliferative rate and invasion by down-regulating the NFκB inducing genes. © 2009 Elsevier GmbH. All rights reserved.postprin

    The impact of diabetes on the success of dental implants and periodontal healing

    Get PDF
    Dental implant is one of the restorative methods to replace missing teeth. As implants are directly anchored into bones, they provide stability, a more natural appearance, and minimize the risk of bone resorption and atrophy. However, studies found that diabetes mellitus patients had a slower healing process after surgery because of the reduction of vascular supply due to microangiopathies, decreased host defense, formation of advanced glycation end-products (AGEs), reduction of collagen production and increased collagenase activity. Diabetes mellitus patients may pose contraindications to dental implants. As a result of that, dental implantation failure rate in diabetic patients is much higher than that in non-diabetic patients. In this clinical experiment, we compared the amount of blood cells, and cytokines production 24 h post implantations, and the implant mobility 90 days post-surgery between controlled type 2 diabetic patients and the non-diabetic patients. It was aimed to investigate the suitability of diabetic patients to have dental implants and the efficacy of the amount of dental implants related to the success rates. 138 patients with type 2 diabetics and 140 healthy subjects, who had one to three adjacent edentulous spaces, were selected. Dental implantation surgeries were performed under local anesthesia. Wounds were sutured and all subjects were given 0.2% chlorohexidine mouthwash for 14 days. Complete blood picture and cytokines production were assayed before operation, as well as on days 1, 2, and 5 after implantation. Implant mobility and periodontal wound healing were monitored once in a fortnight up to 90 days. There were no statistically significant differences in the production of cytokines. In 138 diabetic patients, 255 implants were presented with second degree mobility 90 days after surgery while the same was demonstrated in 48 out of 346 implants from the healthy subjects. These implants were considered failures and were extracted. Implant failure in diabetics was significantly greater than that in non-diabetics when multiple adjoining implants were placed. © 2009 Academic Journals.published_or_final_versio

    Evaluation of Ellagic acid on the activities of oral bacteria with the use of adenosine triphosphate (ATP) bioluminescence assay

    Get PDF
    Ellagic acid, a natural herb extract from Galla Chinensis in traditional Chinese medicine, shows antimicrobial activity to certain bacteria. The present study evaluated the effect of Ellagic acid on the growth of oral bacteria as well as their generation of water-insoluble glucan and adhesion to salivacoated hydroxyapatite (S-HA) beads. Streptococcus mutans ATCC 25175, Streptococcus sanguis ATCC 10556, Streptococcus salivarius ATCC 25975, Actinomyces naeslundii ATCC 12104, Actinomyces viscosus ATCC 15987, Lactobacillus rhamnosus ATCC 53103, Porphyromonas gingivalis ATCC 33277 and Bacteroides forsythus ATCC 43037 were the bacterial cell lines used in this study. Antibacterial activity of Ellagic acid was determined by using adenosine triphosphate (ATP) bioluminescence assayat various concentrations from 0.125 to 8 mg/ml. Anthrone method was used to evaluate the level of water-insoluble glucan generated by oral bacteria. The numbers of 3H-thymidine labeled bacteria attached to S-HA was counted by scintillation counting method. Sprague Dawley rats were orally fed with 0.5mg/mL ellagic acid for 28 days and their behaviours and excretions were monitored. Ellagic acid reduced bacterial metabolic rates and inhibited the growth of the tested bacterial strains. The waterinsolubleglucan generated by S. mutans and its adhesion to S-HA were reduced. Ellagic acid demonstrated no toxicity in animals fed for 28 days. Ellagic acid might be a promising compound for the development of antimicrobial agents against oral pathogens in human, thereby reducing theincidence of dental caries

    Polistes olivaceous decreases biotic surface colonization

    Get PDF
    The objective of this investigation was to evaluate the anti-bacterial efficacy of the honeycomb of Polistes olivaceous on oral biotic surface (biofilm) model by means of pH response, population of oral bacteria and enamel mineralization. Three copies of a three-organism-bacterial consortium was grown on hydroxyapatite (HA) surfaces in a continuous culture system and exposed to repeated solution pulses of sucrose solution every 12 h to construct a cariogenic biofilm on the HA discs in the flow cells. One flow cell was only pulsed with 500 μmol/ml of sucrose (S group). The second flow cell was pulsed with 500 μmol/ml sucrose and 2.5 mg/ml P. olivaceous extract (P group). The third flow cell was pulsed with 500 μmol/ml sucrose, 230 mg/L sodium fluoride and 0.2% chlorohexidine digluconate (C group). During the course of carbohydrate supplement, the pH of the S group dropped sharply compared with the others. The P group demonstrated pH recovery to baseline more easily than the S group (p < 0.05). The C group demonstrated very little pH drop. The P group displayed a lower level of colonization than the S group, which was reflected by a lower cariogenic bacterial count and a less compact biofilm especially after the third pulse. P. olivaceous suppresses bacteria growth and accelerates pH recovery. P. olivaceous may have stabilizing effect against cariogenic shift on the oral biofilm, preventing tooth decay. © 2009 Academic Journals.published_or_final_versio

    Polistes olivaceous decreases biotic surface colonization

    Get PDF
    The objective of this investigation was to evaluate the anti-bacterial efficacy of the honeycomb of Polistes olivaceous on oral biotic surface (biofilm) model by means of pH response, population of oralbacteria and enamel mineralization. Three copies of a three-organism-bacterial consortium was grown on hydroxyapatite (HA) surfaces in a continuous culture system and exposed to repeated solution pulses of sucrose solution every 12 h to construct a cariogenic biofilm on the HA discs in the flow cells. One flow cell was only pulsed with 500 mol/ml of sucrose (S group). The second flow cell was pulsed with 500 mol/ml sucrose and 2.5 mg/ml P. olivaceous extract (P group). The third flow cell was pulsed with 500 mol/ml sucrose, 230 mg/L sodium fluoride and 0.2% chlorohexidine digluconate (C group). During the course of carbohydrate supplement, the pH of the S group dropped sharply compared with the others. The P group demonstrated pH recovery to baseline more easily than the S group (p < 0.05). The C group demonstrated very little pH drop. The P group displayed a lower level of colonization than the S group, which was reflected by a lower cariogenic bacterial count and a less compact biofilm especially after the third pulse. P. olivaceous suppresses bacteria growth and accelerates pH recovery.P. olivaceous may have stabilizing effect against cariogenic shift on the oral biofilm, preventing tooth decay

    Effects of various forms of lipopolysaccharide on the expression of inflammatory mediators and cardiac biomarkers in human cardiac fibroblasts and human coronary smooth muscle cells

    Get PDF
    Inflammation is an important event in the development of vascular diseases such as hypertension, atherosclerosis, and restenosis. The stimulation of lipopolysaccharide (LPS) from bacteria induces the release of critical proinflammatory cytokines that activate potent immune responses which may cause injury of cells in vivo and in vitro. Upon cardiac cell death caused by inflammation, the apoptotic cardiac cells express higher amount of cardiac markers. In this study, the effect of various LPS on human cardiac fibroblasts (HCFs) and human coronary smooth muscle cells (HCSMCs) were evaluated. Various forms of LPS were applied to HCFs and HCSMCs for 24, 48, 72 and 96 h. Proliferation rate of these cells was evaluated after stimulation. The levels of lactate dehydrogenase (LDH), N-terminal pro B-type natriuretic peptide (pro-BNP) and the MB isoenzyme of creatine kinase (CK-MB) were measured by an automation system. Cytokine levels in culture supernatants and extracted protein of cells were mixed and measured with IL-1β, IL-6 and IL-10 ELISA kits. Significant increase in the proliferation of two cardiac cells (P&lt;0.05) after incubation for 48 and 72 h was noted but not for 24 and 96 h (P&gt;0.05). Cardiac markers and inflammatory cytokines were significantly higher than control at 48 and 72 h (P&lt;0.05), which demonstrated that HCFs and HCMSCs were under inflammation leading to cell injury between 48 and 72 h. LPS is one of the factors giving rise to periodontal diseases, it is also involved in in vitro cardiac cell injury. Therefore, LPS may be used as a bio-marker to monitor local or systemic inflammation.Key words: Lipopolysaccharide, human cardiac fibroblasts, human coronary smooth muscle cell, inflammatory cytokines, cardiac bio-marker

    Application of a Nano-antimicrobial film to prevent ventilator-associated pneumonia: A pilot study

    Get PDF
    Ventilator-associated pneumonia (VAP) is one of the most common hospital-associated infections and has accounted for approximately 15% of all hospital-associated infections. In 76% of the VAP cases, the same bacteria colonize the oral cavity and lungs. Oral care interventions may play a role in the prevention of VAP, yet more than half of the hospitals do not have specific policies for the oral care of intubated patients. Oral cavity interlinks with respiratory tracts and digestive tracts. After surgery has been performed in these areas, aerobic and anaerobic bacteria frequently induce operative wound infections in teeth, gingiva and supporting tissues of the teeth and tonsils. This study investigates the effects of a nanotechnology antimicrobial spray (JUC) on the incidence of VAP. 320 patients diagnosed with VAP were randomly divided into treatment and control groups. After using chlorhexidine mouthrinse, the treatment group used a nanotechnology antimicrobial spray to the nose and mouth. The control group was given normal saline. The incidence rate of VAP was significantly lower in the treatment (8.38%) than control group (54.24%) (p<0.01). A physical antimicrobial film is formed on the surface of oral and nasal mucosa after using the JUC spray which effectively reduces the microbial colonization in the sprayed areas, thus reducing and delaying the incidence of VAP. © 2011 Academic Journals.published_or_final_versio

    Mesenchymal Stem Cells in Early Entry of Breast Cancer into Bone Marrow

    Get PDF
    BACKGROUND: An understanding of BC cell (BCC) entry into bone marrow (BM) at low tumor burden is limited when compared to highly metastatic events during heavy tumor burden. BCCs can achieve quiescence, without interfering with hematopoiesis. This occurs partly through the generation of gap junctions with BM stroma, located close to the endosteum. These events are partly mediated by the evolutionary conserved gene, Tac1. METHODOLOGY/PRINCIPAL FINDINGS: This study focuses on the role of mesenchymal stem cells (MSCs), Tac1, SDF-1 and CXCR4 in BCC entry into BM. The model is established in studies with low numbers of tumor cells, and focuses on cancer cells with low metastatic and invasion potential. This allowed us to recapitulate early event, and to study cancer cells with low invasive potential, even when they are part of larger numbers of highly metastatic cells. A novel migration assay showed a facilitating role of MSCs in BCC migration across BM endothelial cells. siRNA and ectopic expression studies showed a central role for Tac1 and secondary roles for SDF-1alpha and CXCR4. We also observed differences in the mechanisms between low invasive and highly metastatic cells. The in vitro studies were verified in xenogeneic mouse models that showed a preference for low invasive BCCs to BM, but comparable movement to lung and BM by highly metastatic BCCs. The expressions of Tac1 and production of SDF-1alpha were verified in primary BCCs from paired samples of BM aspirates and peripheral blood. CONCLUSIONS/SIGNIFICANCE: MSC facilitate BCC entry into BM, partly through Tac1-mediated regulation of SDF-1alpha and CXCR4. We propose a particular population of BCC with preference for BM could be isolated for characterization. This population might be the subset that enter BM at an early time period, and could be responsible for cancer resurgence and resistance to current therapies
    corecore