22 research outputs found

    Palatal development of preterm and low birthweight infants compared to term infants – What do we know? Part 1: The palate of the term newborn

    Get PDF
    BACKGROUND: The evidence on prematurity as 'a priori' a risk for palatal disturbances that increase the need for orthodontic or orthognathic treatment is still weak. Further well-designed clinical studies are needed. The objective of this review is to provide a fundamental analysis of methodologies, confounding factors, and outcomes of studies on palatal development. One focus of this review is the analysis of studies on the palate of the term newborn, since knowing what is 'normal' is a precondition of being able to assess abnormalities. METHODS: A search profile based on Cochrane search strategies applied to 10 medical databases was used to identify existing studies. Articles, mainly those published before 1960, were identified from hand searches in textbooks, encyclopedias, reference lists and bibliographies. Sources in English, German, and French of more than a century were included. Data for term infants were recalculated if particular information about weight, length, or maturity was given. The extracted values, especially those from non-English paper sources, were provided unfiltered for comparison. RESULTS: The search strategy yielded 182 articles, of which 155 articles remained for final analysis. Morphology of the term newborn's palate was of great interest in the first half of the last century. Two general methodologies were used to assess palatal morphology: visual and metrical descriptions. Most of the studies on term infants suffer from lack of reliability tests. The groove system was recognized as the distinctive feature of the infant palate. The shape of the palate of the term infant may vary considerably, both visually and metrically. Gender, race, mode of delivery, and nasal deformities were identified as causes contributing to altered palatal morphology. Until today, anatomical features of the newborn's palate are subject to a non-uniform nomenclature. CONCLUSION: Today's knowledge of a newborn's 'normal' palatal morphology is based on non-standardized and limited methodologies for measuring a three-dimensional shape. This shortcoming increases bias and is the reason for contradictory research results, especially if pathologic conditions like syndromes or prematurity are involved. Adequate measurement techniques are needed and the 'normal palatal morphology' should be defined prior to new clinical studies on palatal development

    Towards the Maturation and Characterization of Smooth Muscle Cells Derived from Human Embryonic Stem Cells

    Get PDF
    In this study we demonstrate that CD34+ cells derived from human embryonic stem cells (hESCs) have higher smooth muscle cell (SMC) potential than CD34− cells. We report that from all inductive signals tested, retinoic acid (RA) and platelet derived growth factor (PDGFBB) are the most effective agents in guiding the differentiation of CD34+ cells into smooth muscle progenitor cells (SMPCs) characterized by the expression of SMC genes and proteins, secretion of SMC-related cytokines, contraction in response to depolarization agents and vasoactive peptides and expression of SMC-related genes in a 3D environment. These cells are also characterized by a low organization of the contractile proteins and the contractility response is mediated by Ca2+, which involves the activation of Rho A/Rho kinase- and Ca2+/calmodulin (CaM)/myosin light chain kinase (MLCK)-dependent pathways. We further show that SMPCs obtained from the differentiation of CD34+ cells with RA, but not with PDGFBB, can be maturated in medium supplemented with endothelin-1 showing at the end individualized contractile filaments. Overall the hESC-derived SMCs presented in this work might be an unlimited source of SMCs for tissue engineering and regenerative medicine.Marie Curie-Reintegration GrantMIT-Portugal programCrioestaminalAssociação Viver a CiênciaFundação para a Ciência e a Tecnologia (PTDC/SA-BEB/098468/2008 and PTDC/CTM/099659/2008 to L.F.; SFRH/BD/40077/2007 to H.V.
    corecore