17 research outputs found

    Application of Consensus Scoring and Principal Component Analysis for Virtual Screening against β-Secretase (BACE-1)

    Get PDF
    BACKGROUND: In order to identify novel chemical classes of β-secretase (BACE-1) inhibitors, an alternative scoring protocol, Principal Component Analysis (PCA), was proposed to summarize most of the information from the original scoring functions and re-rank the results from the virtual screening against BACE-1. METHOD: Given a training set (50 BACE-1 inhibitors and 9950 inactive diverse compounds), three rank-based virtual screening methods, individual scoring, conventional consensus scoring and PCA, were judged by the hit number in the top 1% of the ranked list. The docking poses were generated by Surflex, five scoring functions (Surflex_Score, D_Score, G_Score, ChemScore, and PMF_Score) were used for pose extraction. For each pose group, twelve scoring functions (Surflex_Score, D_Score, G_Score, ChemScore, PMF_Score, LigScore1, LigScore2, PLP1, PLP2, jain, Ludi_1, and Ludi_2) were used for the pose rank. For a test set, 113,228 chemical compounds (Sigma-Aldrich® corporate chemical directory) were docked by Surflex, then ranked by the same three ranking methods motioned above to select the potential active compounds for experimental test. RESULTS: For the training set, the PCA approach yielded consistently superior rankings compared to conventional consensus scoring and single scoring. For the test set, the top 20 compounds according to conventional consensus scoring were experimentally tested, no inhibitor was found. Then, we relied on PCA scoring protocol to test another different top 20 compounds and two low micromolar inhibitors (S450588 and 276065) were emerged through the BACE-1 fluorescence resonance energy transfer (FRET) assay. CONCLUSION: The PCA method extends the conventional consensus scoring in a quantitative statistical manner and would appear to have considerable potential for chemical screening applications

    Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease

    Full text link

    Serine is a natural ligand and allosteric activator of pyruvate kinase M2

    No full text
    Cancer cells exhibit several unique metabolic phenotypes that are critical for cell growth and proliferation(1). Specifically, they overexpress the M2 isoform of the tightly regulated enzyme pyruvate kinase (PKM2), which controls glycolytic flux, and are highly dependent on de novo biosynthesis of serine and glycine(2). Here we describe a new rheostat-like mechanistic relationship between PKM2 activity and serine biosynthesis. We show that serine can bind to and activate human PKM2, and that PKM2 activity in cells is reduced in response to serine deprivation. This reduction in PKM2 activity shifts cells to a fuel-efficient mode in which more pyruvate is diverted to the mitochondria and more glucose-derived carbon is channelled into serine biosynthesis to support cell proliferation
    corecore