76 research outputs found

    Alternative Mechanisms for Tn5 Transposition

    Get PDF
    Bacterial transposons are known to move to new genomic sites using either a replicative or a conservative mechanism. The behavior of transposon Tn5 is anomalous. In vitro studies indicate that it uses a conservative mechanism while in vivo results point to a replicative mechanism. To explain this anomaly, a model is presented in which the two mechanisms are not independent—as widely believed—but could represent alternate outcomes of a common transpositional pathway

    Insertion Sequence Inversions Mediated by Ectopic Recombination between Terminal Inverted Repeats

    Get PDF
    Transposable elements are widely distributed and diverse in both eukaryotes and prokaryotes, as exemplified by DNA transposons. As a result, they represent a considerable source of genomic variation, for example through ectopic (i.e. non-allelic homologous) recombination events between transposable element copies, resulting in genomic rearrangements. Ectopic recombination may also take place between homologous sequences located within transposable element sequences. DNA transposons are typically bounded by terminal inverted repeats (TIRs). Ectopic recombination between TIRs is expected to result in DNA transposon inversions. However, such inversions have barely been documented. In this study, we report natural inversions of the most common prokaryotic DNA transposons: insertion sequences (IS). We identified natural TIR-TIR recombination-mediated inversions in 9% of IS insertion loci investigated in Wolbachia bacteria, which suggests that recombination between IS TIRs may be a quite common, albeit largely overlooked, source of genomic diversity in bacteria. We suggest that inversions may impede IS survival and proliferation in the host genome by altering transpositional activity. They may also alter genomic instability by modulating the outcome of ectopic recombination events between IS copies in various orientations. This study represents the first report of TIR-TIR recombination within bacterial IS elements and it thereby uncovers a novel mechanism of structural variation for this class of prokaryotic transposable elements

    Implementation of transposon mutagenesis in Bifidobacterium

    Get PDF
    Random transposon mutagenesis allows for relatively rapid, genome-wide surveys to detect genes involved in functional traits, by performing screens of mutant libraries. This approach has been widely applied to identify genes responsible for activities of interest in multiple eukaryote and prokaryote organisms, although most studies on microorganisms have focused on pathogenic and clinically relevant bacteria. In this chapter we describe the implementation of an in vitro Tn5-based transposome strategy to generate a large collection of random mutants in the gut commensal Bifidobacterium breve UCC2003, and discuss considerations when applying this mutagenesis system to other Bifidobacterium species or strains of interest

    Influence of DNA topology on expression of the tdc operon in Escherichia coli K-12

    Full text link
    TdcB activity expressed from the chromosomal gene and LacZ expression from single-copy tdc-lacZ transcriptional and translational fusions were measured in Escherichia coli strains harboring mutations in the genes encoding DNA gyrase, topoisomerase I and the HU protein. The pattern of tdc operon expression in these mutants suggests that relaxation of supercoiled DNA enhances tdc transcription in vivo.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47585/1/438_2004_Article_BF00290409.pd

    Initiation of rrn transcription in chloroplasts of Euglena gracilis bacillaris

    Full text link
    The site of initiation of chloroplast rRNA synthesis was determined by Sl-mapping and by sequencing primary rRNA transcripts specifically labeled at their 5′-end. Transcription initiates at a single site 53 nucleotides upstream of the 5'-end of the mature 16S rRNA under all growth conditions examined. The initiation site is within a DNA sequence that is highly homologous to and probably derived from a tRNA gene-region located elsewhere in the chloroplast genome. A nearly identical sequence (102 of 103 nucleotides) is present near the replication origin. The near identity of the two sequences suggests a common mode for control of transcription of the rRNA genes and initiation of chloroplast DNA replication. The related sequence in the tRNA gene-region does not appear to serve as a transcript initiation site.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46967/1/294_2004_Article_BF00521275.pd

    Transposon for protein engineering

    No full text

    Intermediates in Transcription Initiation and Propagation

    No full text
    • …
    corecore