20 research outputs found

    hEGR1 is induced by EGF, inhibited by gefitinib in bladder cell lines and related to EGF receptor levels in bladder tumours

    Get PDF
    The effect of EGF and gefitinib on two EGFR-positive human bladder cancer cell lines has been investigated using array-based gene expression profiling. The most prominent transcript, increased up to 6.7-fold by EGF compared with controls in RT112 cells, was human early growth response protein 1 (hEGR1). This induction was prevented by gefitinib. The hEGR1 mRNA in EGF-treated samples was reduced in the presence of gefitinib, as was hEGR1 protein in cell lysates. In the RT4 cells, hEGR1 expression was halved in the presence of EGF and gefitinib in combination. In bladder tumour samples, there was a significant correlation between hEGR1 mRNA detected by RT-PCR and EGFR detected by ligand binding, (P=0.042). The induction by EGF of the hEGR1 gene, mRNA and protein in RT112 cells, and its inhibition by gefitinib, together with the detection of hEGR1 mRNA in bladder tumours, suggests that hEGR1 may be important in the EGFR growth-signalling pathway in bladder cancer and should be further investigated for its prognostic significance and as a potential therapeutic target

    Novel Pink Bollworm Resistance to the Bt Toxin Cry 1Ac: Effects on Mating, Oviposition, Larval Development and Survival

    Get PDF
    Bt cotton plants are genetically engineered to produce insecticidal toxins from the Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) bacterium and target key lepidopteran pests. In all previous strains of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) selected in the laboratory for resistance to insecticidal Cry1Ac toxin using an artificial diet containing the toxin, resistance to Cry1Ac and to Bt cotton is linked to three cadherin alleles (r1, r2, and r3). In contrast, the BG(4) pink bollworm strain was selected for resistance to Bt cotton by feeding larvae for four days in each of 42 generations on bolls of ‘NuCOTN33B®’ that expressed Cry1Ac toxin. After additional selection for eleven generations on Cry1Ac-incorporated diet, the susceptibility to Cry1Ac, fecundity, egg viability, and mating of this strain (Bt4R) was compared with the unselected Cry1Ac-susceptible parent strain. Some larvae of the Bt4R strain survived on diet containing ≥ 10 µg Cry1Ac per milliliter artificial diet, but none survived on transgenic cotton bolls. In contrast to strains selected exclusively on Cry1Ac diet, some survival of progeny of reciprocal moth crosses of Bt4R resistant and Bt-susceptible strains occurred on Cry1Ac-treated diet, suggesting differences in levels of dominance. The Bt4R resistant strain does not have the r1, r2, or r3 mutant cadherin genes as do all previous strains of pink bollworm selected on Cry1Ac-treated artificial diet. The combined results suggest a mechanism of resistance to Cry1Ac that is different from previously described cadherin mutations

    Niemann-Pick disease type C

    Get PDF
    Niemann-Pick C disease (NP-C) is a neurovisceral atypical lysosomal lipid storage disorder with an estimated minimal incidence of 1/120 000 live births. The broad clinical spectrum ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease. The neurological involvement defines the disease severity in most patients but is typically preceded by systemic signs (cholestatic jaundice in the neonatal period or isolated spleno- or hepatosplenomegaly in infancy or childhood). The first neurological symptoms vary with age of onset: delay in developmental motor milestones (early infantile period), gait problems, falls, clumsiness, cataplexy, school problems (late infantile and juvenile period), and ataxia not unfrequently following initial psychiatric disturbances (adult form). The most characteristic sign is vertical supranuclear gaze palsy. The neurological disorder consists mainly of cerebellar ataxia, dysarthria, dysphagia, and progressive dementia. Cataplexy, seizures and dystonia are other common features. NP-C is transmitted in an autosomal recessive manner and is caused by mutations of either the NPC1 (95% of families) or the NPC2 genes. The exact functions of the NPC1 and NPC2 proteins are still unclear. NP-C is currently described as a cellular cholesterol trafficking defect but in the brain, the prominently stored lipids are gangliosides. Clinical examination should include comprehensive neurological and ophthalmological evaluations. The primary laboratory diagnosis requires living skin fibroblasts to demonstrate accumulation of unesterified cholesterol in perinuclear vesicles (lysosomes) after staining with filipin. Pronounced abnormalities are observed in about 80% of the cases, mild to moderate alterations in the remainder ("variant" biochemical phenotype). Genotyping of patients is useful to confirm the diagnosis in the latter patients and essential for future prenatal diagnosis. The differential diagnosis may include other lipidoses; idiopathic neonatal hepatitis and other causes of cholestatic icterus should be considered in neonates, and conditions with cerebellar ataxia, dystonia, cataplexy and supranuclear gaze palsy in older children and adults. Symptomatic management of patients is crucial. A first product, miglustat, has been granted marketing authorization in Europe and several other countries for specific treatment of the neurological manifestations. The prognosis largely correlates with the age at onset of the neurological manifestations

    A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study

    No full text
    Despite its common use in cancer treatment, radiotherapy has not yet entered the era of precision medicine, and there have been no approaches to adjust dose based on biological differences between or within tumours. We aimed to assess whether a patient-specific molecular signature of radiation sensitivity could be used to identify the optimum radiotherapy dose. We used the gene-expression-based radiation-sensitivity index and the linear quadratic model to derive the genomic-adjusted radiation dose (GARD). A high GARD value predicts for high therapeutic effect for radiotherapy; which we postulate would relate to clinical outcome. Using data from the prospective, observational Total Cancer Care (TCC) protocol, we calculated GARD for primary tumours from 20 disease sites treated using standard radiotherapy doses for each disease type. We also used multivariable Cox modelling to assess whether GARD was independently associated with clinical outcome in five clinical cohorts: Erasmus Breast Cancer Cohort (n=263); Karolinska Breast Cancer Cohort (n=77); Moffitt Lung Cancer Cohort (n=60); Moffitt Pancreas Cancer Cohort (n=40); and The Cancer Genome Atlas Glioblastoma Patient Cohort (n=98). We calculated GARD for 8271 tissue samples from the TCC cohort. There was a wide range of GARD values (range 1·66-172·4) across the TCC cohort despite assignment of uniform radiotherapy doses within disease types. Median GARD values were lowest for gliomas and sarcomas and highest for cervical cancer and oropharyngeal head and neck cancer. There was a wide range of GARD values within tumour type groups. GARD independently predicted clinical outcome in breast cancer, lung cancer, glioblastoma, and pancreatic cancer. In the Erasmus Breast Cancer Cohort, 5-year distant-metastasis-free survival was longer in patients with high GARD values than in those with low GARD values (hazard ratio 2·11, 95% 1·13-3·94, p=0·018). A GARD-based clinical model could allow the individualisation of radiotherapy dose to tumour radiosensitivity and could provide a framework to design genomically-guided clinical trials in radiation oncology. None

    Anticancer activity of VDR-coregulator inhibitor PS121912

    No full text
    PURPOSE: PS121912 has been developed as selective vitamin D receptor (VDR)–coregulator inhibitor starting from a high throughput screening campaign to identify new agents that modulate VDR without causing hypercalcemia. Initial antiproliferative effects of PS121912 were observed that are characterized herein to enable future in vivo investigation with this molecule. METHODS: Antiproliferation and apoptosis was determined using four different cancer cell lines (DU145, Caco2, HL-60, and SKOV3) in the presence of PS121912, 1,25-(OH)(2)D(3), or a combination of 1,25-(OH)(2)D(3) and PS121912. VDR si-RNA was used to identify the role of VDR during this process. The application of ChIP enabled us to determine the involvement of coregulator recruitment during transcription, which was investigated by rt-PCR with VDR target genes and those affiliated with cell cycle progression. Translational changes of apoptotic proteins were determined with an antibody array. The preclinical characterization of PS121912 include the determination of metabolic stability and CYP3A4 inhibition. RESULTS: PS121912 induced apoptosis in all four cancer cells, with HL-60 cells being the most sensitive. At sub-micromolar concentrations, PS121912 amplified the growth inhibition of cancer cells caused by 1,25-(OH)(2)D(3) without being antiproliferative by itself. A knockout study with VDR si-RNA confirmed the mediating role of VDR. VDR target genes induced by 1,25-(OH)(2)D(3) were down-regulated with the co-treatment of PS121912. This process was highly dependent on the recruitment of coregulators that in case of CYP24A1 was SRC2. The combination of PS121912 and 1,25-(OH)(2)D(3) reduced the presence of SRC2 and enriched the occupancy of corepressor NCoR at the promoter site. E2F transcription factor 1 and 4 were down-regulated in the presence of PS121912 and 1,25-(OH)(2)D(3) that in turn reduced the transcription levels of cyclin A and D thus arresting HL-60 cells in the S or G2/M phase. In addition, proteins with hematopietic functions such as cyclin-dependent kinase 6, histone deacetylase 9 and transforming growth factor beta 2 and 3 were down-regulated as well. Elevated levels of P21 and GADD45, in concert with cyclin D1 also mediated the antiproliferative response of HL-60 in the presence of 1,25-(OH)(2)D(3) and PS121912. Studies at higher concentration of P121912 identified a VDR-independent pathway of antiproliferation that included the enzymatic and transcriptional activation of caspase 3/7. CONCLUSION: Overall, we conclude that PS121912 behaves like a VDR antagonist at low concentrations but interacts with more targets at higher concentrations leading to apoptosis mediated by caspase 3/7 activation. In addition, PS121912 showed an acceptable metabolic stability to enable in vivo cancer studies

    Cardinal Utility: A History of Hedonimetry

    No full text
    corecore