10 research outputs found

    Design of a series visco-elastic actuator for multi-purpose rehabilitation haptic device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variable structure parallel mechanisms, actuated with low-cost motors with serially added elasticity (series elastic actuator - SEA), has considerable potential in rehabilitation robotics. However, reflected masses of a SEA and variable structure parallel mechanism linked with a compliant actuator result in a potentially unstable coupled mechanical oscillator, which has not been addressed in previous studies.</p> <p>Methods</p> <p>The aim of this paper was to investigate through simulation, experimentation and theoretical analysis the necessary conditions that guarantee stability and passivity of a haptic device (based on a variable structure parallel mechanism driven by SEA actuators) when in contact with a human. We have analyzed an equivalent mechanical system where a dissipative element, a mechanical damper was placed in parallel to a spring in SEA.</p> <p>Results</p> <p>The theoretical analysis yielded necessary conditions relating the damping coefficient, spring stiffness, both reflected masses, controller's gain and desired virtual impedance that needs to be fulfilled in order to obtain stable and passive behavior of the device when in contact with a human. The validity of the derived passivity conditions were confirmed in simulations and experimentally.</p> <p>Conclusions</p> <p>These results show that by properly designing variable structure parallel mechanisms actuated with SEA, versatile and affordable rehabilitation robotic devices can be conceived, which may facilitate their wide spread use in clinical and home environments.</p

    A narrative review on haptic devices: relating the physiology and psychophysical properties of the hand to devices for rehabilitation in central nervous system disorders

    No full text
    Purpose. This paper provides rehabilitation professionals and engineers with a theoretical and pragmatic rationale for the inclusion of haptic feedback in the rehabilitation of central nervous system disorders affecting the hand.Method. A narrative review of haptic devices used in sensorimotor hand rehabilitation was undertaken. Presented papers were selected to outline and clarify the underlying somatosensory mechanisms underpinning these technologies and provide exemplars of the evidence to date.Results. Haptic devices provide kinaesthetic and/or tactile stimulation. Kinaesthetic haptics are beginning to be incorporated in central nervous system rehabilitation, however, there has been limited development of tactile haptics. Clinical research in haptic rehabilitation of the hand is embryonic but initial findings indicate potential clinical benefit. Conclusions. Haptic rehabilitation offers the potential to advance sensorimotor hand rehabilitation but both scientific and pragmatic developments are needed to ensure that its potential is realised.<br/

    Gesture recognition for control of rehabilitation robots

    No full text
    The development of a control user interface for a wheelchair mounted manipulator for use by severely disabled persons is described, explaining the construction of the interface using task analysis. The prototype robot used several gesture recognition systems including Neural Networks to achieve a level of usability better than other robots used for rehabilitation at the time, demonstrating the possibility of control using a simple head mouse. The major impact of this research has been to illustrate the poor performance of existing design methods for dynamic user interfaces. This work has been confirmed by experiments of other workers
    corecore