41 research outputs found

    Brendan meets Columbus: A more commodious islescape

    Get PDF
    This paper proposes that we can reimagine insular literatures and medieval islescapes as commodious seas of cultural and intellectual loci that span time, culture, and text alike. By moving beyond the rhetoric of insular separation or connectivity, we can see that islands connect even when medieval minds saw separation. The essay focuses on the Brendan legend and the commodious cultural ‘sea of islands’ that it inhabits, a space that connects the modern reader to a history of other connections, fact to fancy, and the real and the imaginary. When sailing in this sea, Brendan meets Columbus, and the late medieval idea of a lost island spreads though space and time

    Treating Severe Malaria in Pregnancy: A Review of the Evidence

    Full text link

    Low-Frequency Finite-Element Modeling of the Gerbil Middle Ear

    No full text
    The gerbil is a popular species for experimental middle-ear research. The goal of this study is to develop a 3D finite-element model to quantify the mechanics of the gerbil middle ear at low frequencies (up to about 1 kHz). The 3D reconstruction is based on a magnetic resonance imaging dataset with a voxel size of about 45 μm, and an x-ray micro-CT dataset with a voxel size of about 5.5 μm, supplemented by histological images. The eardrum model is based on moiré shape measurements. Each individual structure in the model was assumed to be homogeneous with isotropic, linear, and elastic material properties derived from a priori estimates in the literature. The behavior of the finite-element model in response to a uniform acoustic pressure on the eardrum of 1 Pa is analyzed. Sensitivity tests are done to evaluate the significance of the various parameters in the finite-element model. The Young’s modulus and the thickness of the pars tensa have the most significant effect on the load transfer between the eardrum and the ossicles and, along with the Young’s modulus of the pedicle and stapedial annular ligament, on the displacements of the stapes. Overall, the model demonstrates good agreement with low-frequency experimental data. For example, (1) the maximum footplate displacement is about 35 nm; (2) the umbo/stapes displacement ratio is found to be about 3.5; (3) the motion of the stapes is predominantly piston-like; and (4) the displacement pattern of the eardrum shows two points of maximum displacement, one in the posterior region and one in the anterior region. The effects of removing or stiffening the ligaments are comparable to those observed experimentally

    On the Coupling Between the Incus and the Stapes in the Cat

    No full text
    The connection between the long process and the lenticular process of the incus is extremely fine, so much so that some authors have treated the lenticular process as a separate bone. We review descriptions of the lenticular process that have appeared in the literature, and present some new histological observations. We discuss the dimensions and composition of the lenticular process and of the incudostapedial joint, and present estimates of the material properties for the bone, cartilage, and ligament of which they are composed. We present a preliminary finite-element model which includes the lenticular plate, the bony pedicle connecting the lenticular plate to the long process, the head of the stapes, and the incudostapedial joint. The model has a much simplified geometry. We present simulation results for ranges of values for the material properties. We then present simulation results for this model when it is incorporated into an overall model of the middle ear of the cat. For the geometries and material properties used here, the bony pedicle is found to contribute significant flexibility to the coupling between the incus and the stapes
    corecore