1,371 research outputs found

    Persistent starspot signals on M dwarfs: multi-wavelength Doppler observations with the Habitable-zone Planet Finder and Keck/HIRES

    Get PDF
    Young, rapidly-rotating M dwarfs exhibit prominent starspots, which create quasiperiodic signals in their photometric and Doppler spectroscopic measurements. The periodic Doppler signals can mimic radial velocity (RV) changes expected from orbiting exoplanets. Exoplanets can be distinguished from activity-induced false positives by the chromaticity and long-term incoherence of starspot signals, but these qualities are poorly constrained for fully-convective M stars. Coherent photometric starspot signals on M dwarfs may persist for hundreds of rotations, and the wavelength dependence of starspot RV signals may not be consistent between stars due to differences in their magnetic fields and active regions. We obtained precise multi-wavelength RVs of four rapidly-rotating M dwarfs (AD Leo, G 227-22, GJ 1245B, GJ 3959) using the near-infrared (NIR) Habitable-zone Planet Finder, and the optical Keck/HIRES spectrometer. Our RVs are complemented by photometry from Kepler, TESS, and the Las Cumbres Observatory (LCO) network of telescopes. We found that all four stars exhibit large spot-induced Doppler signals at their rotation periods, and investigated the longevity and optical-to-NIR chromaticity for these signals. The phase curves remain coherent much longer than is typical for Sunlike stars. Their chromaticity varies, and one star (GJ 3959) exhibits optical and NIR RV modulation consistent in both phase and amplitude. In general, though, we find that the NIR amplitudes are lower than their optical counterparts. We conclude that starspot modulation for rapidly-rotating M stars frequently remains coherent for hundreds of stellar rotations, and gives rise to Doppler signals that, due to this coherence, may be mistaken for exoplanets.Comment: Accepted for publication in the Astrophysical Journa

    Potential Added Value of Psychological Capital in Predicting Work Attitudes

    Get PDF
    Meeting the challenge of effectively managing human resources requires new thinking and approaches. To extend the traditional perspective of economic capital, increasing recognition is being given to human capital and more recently social capital, this article proposes and empirically tests the potential added value that psychological capital may have for employee attitudes of satisfaction and commitment. After first providing the background and theory of PsyCap, this article reports a study of manufacturing employees (N = 74) that found a significant relationship between PsyCap and job satisfaction (r=.373) and organization commitment (r=.313). Importantly, the employees’ PsyCap had a significant added impact over human and social capital on these work attitudes. Future research and practical implications conclude the article

    Detection of p-mode Oscillations in HD 35833 with NEID and TESS

    Full text link
    We report the results of observations of p-mode oscillations in the G0 subgiant star HD 35833 in both radial velocities and photometry with NEID and TESS, respectively. We achieve separate, robust detections of the oscillation signal with both instruments (radial velocity amplitude ARV=1.11±0.09A_{\rm RV}=1.11\pm0.09 m s1^{-1}, photometric amplitude Aphot=6.42±0.60A_{\rm phot}=6.42\pm0.60 ppm, frequency of maximum power νmax=595.71±17.28\nu_{\rm max} = 595.71\pm17.28 μ\muHz, and mode spacing Δν=36.65±0.96\Delta \nu = 36.65\pm0.96 μ\muHz) as well as a non-detection in a TESS sector concurrent with the NEID observations. These data shed light on our ability to mitigate the correlated noise impact of oscillations with radial velocities alone, and on the robustness of commonly used asteroseismic scaling relations. The NEID data are used to validate models for the attenuation of oscillation signals for exposure times t<νmax1t<\nu_{\rm max}^{-1}, and we compare our results to predictions from theoretical scaling relations and find that the observed amplitudes are weaker than expected by >4σ>4\sigma, hinting at gaps in the underlying physical models.Comment: 19 Pages, 14 Figures, Appendi

    Persistent Starspot Signals on M Dwarfs: Multiwavelength Doppler Observations with the Habitable-zone Planet Finder and Keck/HIRES

    Get PDF
    Young, rapidly rotating M dwarfs exhibit prominent starspots, which create quasiperiodic signals in their photometric and Doppler spectroscopic measurements. The periodic Doppler signals can mimic radial velocity (RV) changes expected from orbiting exoplanets. Exoplanets can be distinguished from activity-induced false positives by the chromaticity and long-term incoherence of starspot signals, but these qualities are poorly constrained for fully convective M stars. Coherent photometric starspot signals on M dwarfs may persist for hundreds of rotations, and the wavelength dependence of starspot RV signals may not be consistent between stars due to differences in their magnetic fields and active regions. We obtained precise multiwavelength RVs of four rapidly rotating M dwarfs (AD Leo, G227-22, GJ 1245B, GJ 3959) using the near-infrared (NIR) Habitable-zone Planet Finder and the optical Keck/HIRES spectrometer. Our RVs are complemented by photometry from Kepler, TESS, and the Las Cumbres Observatory network of telescopes. We found that all four stars exhibit large spot-induced Doppler signals at their rotation periods, and investigated the longevity and optical-to-NIR chromaticity for these signals. The phase curves remain coherent much longer than is typical for Sunlike stars. Their chromaticity varies, and one star (GJ 3959) exhibits optical and NIR RV modulation consistent in both phase and amplitude. In general, though, we find that the NIR amplitudes are lower than their optical counterparts. We conclude that starspot modulation for rapidly rotating M stars frequently remains coherent for hundreds of stellar rotations and gives rise to Doppler signals that, due to this coherence, may be mistaken for exoplanets

    TOI-1728b: The Habitable-zone Planet Finder confirms a warm super Neptune orbiting an M dwarf host

    Get PDF
    We confirm the planetary nature of TOI-1728b using a combination of ground-based photometry, near-infrared Doppler velocimetry and spectroscopy with the Habitable-zone Planet Finder.TOI-1728 is an old, inactive M0 star with \teff{} =398032+31= 3980^{+31}_{-32} K, which hosts a transiting super Neptune at an orbital period of \sim 3.49 days. Joint fitting of the radial velocities and TESS and ground-based transits yields a planetary radius of 5.050.17+0.165.05_{-0.17}^{+0.16} R_{\oplus}, mass 26.785.13+5.4326.78_{-5.13}^{+5.43} M_{\oplus} and eccentricity 0.0570.039+0.0540.057_{-0.039}^{+0.054}. We estimate the stellar properties, and perform a search for He 10830 \AA absorption during the transit of this planet and claim a null detection with an upper limit of 1.1%\% with 90\% confidence. A deeper level of He 10830 \AA ~ absorption has been detected in the planet atmosphere of GJ 3470b, a comparable gaseous planet. TOI-1728b is the largest super Neptune -- the intermediate subclass of planets between Neptune and the more massive gas-giant planets -- discovered around an M dwarf. With its relatively large mass and radius, TOI-1728 represents a valuable datapoint in the M-dwarf exoplanet mass-radius diagram, bridging the gap between the lighter Neptune-sized planets and the heavier Jovian planets known to orbit M-dwarfs. With a low bulk density of 1.140.24+0.261.14_{-0.24}^{+0.26} g/cm3^3, and orbiting a bright host star (J 9.6\sim 9.6, V 12.4\sim 12.4), TOI-1728b is also a promising candidate for transmission spectroscopy both from the ground and from space, which can be used to constrain planet formation and evolutionary models.Comment: 21 pages, 12 figures, 4 tables: Accepted for publicatio

    TOI-1728b: The Habitable-zone Planet Finder Confirms a Warm Super-Neptune Orbiting an M-dwarf Host

    Get PDF
    We confirm the planetary nature of TOI-1728b using a combination of ground-based photometry, near-infrared Doppler velocimetry and spectroscopy with the Habitable-zone Planet Finder. TOI-1728 is an old, inactive M0 star with T_(eff) = 3980⁺³¹₋₃₂ K, which hosts a transiting super-Neptune at an orbital period of ~3.49 days. Joint fitting of the radial velocities and TESS and ground-based transits yields a planetary radius of 5.05^(+0.16)_(-0.17) R_⊕, mass 26.78^(+5.43)_(-5.13) M_⊕, and eccentricity 0.057^(+0.054)_(-0.039). We estimate the stellar properties, and perform a search for He 10830 Å absorption during the transit of this planet and claim a null detection with an upper limit of 1.1% with 90% confidence. A deeper level of He 10830 Å absorption has been detected in the planet atmosphere of GJ 3470b, a comparable gaseous planet. TOI-1728b is the largest super-Neptune—the intermediate subclass of planets between Neptune and the more massive gas-giant planets—discovered around an M dwarf. With its relatively large mass and radius, TOI-1728 represents a valuable data point in the M-dwarf exoplanet mass–radius diagram, bridging the gap between the lighter Neptune-sized planets and the heavier Jovian planets known to orbit M dwarfs. With a low bulk density of 1.14^(+0.26)_(-0.24) g cm⁻³, and orbiting a bright host star (J ~ 9.6, V ~ 12.4), TOI-1728b is also a promising candidate for transmission spectroscopy both from the ground and from space, which can be used to constrain planet formation and evolutionary models
    corecore