224 research outputs found

    Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease

    Get PDF
    Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting

    Identifying and Seeing beyond Multiple Sequence Alignment Errors Using Intra-Molecular Protein Covariation

    Get PDF
    BACKGROUND: There is currently no way to verify the quality of a multiple sequence alignment that is independent of the assumptions used to build it. Sequence alignments are typically evaluated by a number of established criteria: sequence conservation, the number of aligned residues, the frequency of gaps, and the probable correct gap placement. Covariation analysis is used to find putatively important residue pairs in a sequence alignment. Different alignments of the same protein family give different results demonstrating that covariation depends on the quality of the sequence alignment. We thus hypothesized that current criteria are insufficient to build alignments for use with covariation analyses. METHODOLOGY/PRINCIPAL FINDINGS: We show that current criteria are insufficient to build alignments for use with covariation analyses as systematic sequence alignment errors are present even in hand-curated structure-based alignment datasets like those from the Conserved Domain Database. We show that current non-parametric covariation statistics are sensitive to sequence misalignments and that this sensitivity can be used to identify systematic alignment errors. We demonstrate that removing alignment errors due to 1) improper structure alignment, 2) the presence of paralogous sequences, and 3) partial or otherwise erroneous sequences, improves contact prediction by covariation analysis. Finally we describe two non-parametric covariation statistics that are less sensitive to sequence alignment errors than those described previously in the literature. CONCLUSIONS/SIGNIFICANCE: Protein alignments with errors lead to false positive and false negative conclusions (incorrect assignment of covariation and conservation, respectively). Covariation analysis can provide a verification step, independent of traditional criteria, to identify systematic misalignments in protein alignments. Two non-parametric statistics are shown to be somewhat insensitive to misalignment errors, providing increased confidence in contact prediction when analyzing alignments with erroneous regions because of an emphasis on they emphasize pairwise covariation over group covariation

    Gemcitabine-mediated tumour regression and p53-dependent gene expression: implications for colon and pancreatic cancer therapy

    Get PDF
    Gemcitabine is a chemotherapeutic that is widely used for the treatment of a variety of haematological malignancies and has become the standard chemotherapy for the treatment of advanced pancreatic cancer. Combinational gemcitabine regimes (e.g. with doxorubicin) are being tested in clinical trials to treat a variety of cancers, including colon cancer. The limited success of these trials has prompted us to pursue a better understanding of gemcitabine's mechanism of cell killing, which could dramatically improve the therapeutic potential of this agent. For comparison, we included gamma irradiation that triggers robust cell cycle arrest and Cr(VI), which is a highly toxic chemical that induces a robust p53-dependent apoptotic response. Gemcitabine induced a potent p53-dependent apoptosis that correlated with the accumulation of pro-apoptotic proteins such as PUMA and Bax. This is accompanied by a drastic reduction in p2l and 14-3-3 sigma protein levels, thereby significantly sensitizing the cells to apoptosis. In vitro and in vivo studies demonstrated that gemcitabine required PUMA transcription to instigate an apoptotic programme. This was in contrast to Cr(VI)-induced apoptosis that required Bax and was independent of transcription. An examination of clinical colon and pancreatic cancer tissues shows higher p53, p21, 14-3-3 sigma and Bax expression compared with matched normal tissues, yet there is a near absence of PUMA protein. This may explain why gemcitabine shows only limited efficacy in the treatment of these cancers. Our results raise the possibility that targeting the Bax-dependent cell death pathway, rather than the PUMA pathway, could result in significantly improved patient outcome and prognosis for these cancers.Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BPD/84634/2012]; European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Canadian Institute of Health Researchinfo:eu-repo/semantics/publishedVersio

    Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells

    Get PDF
    Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons

    Synapse Geometry and Receptor Dynamics Modulate Synaptic Strength

    Get PDF
    Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD) and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity

    Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus

    Get PDF
    The phosphoinositide-3 kinase (PI3K) pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV). Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection

    The effect of surgically induced ischaemia on gene expression in a colorectal cancer xenograft model

    Get PDF
    Delays in tissue fixation following tumour vascular clamping and extirpation may adversely affect subsequent protein and mRNA analysis. This study investigated the effect of surgically induced ischaemia in a xenograft model of a colorectal cancer on the expression of a range of prognostic, predictive, and hypoxic markers, with a particular emphasis on thymidylate synthase. Vascular occlusion of human tumour xenografts by D-shaped metal clamps permitted defined periods of tumour ischaemia. Alterations in protein expression were measured by immunohistochemistry and spectral imaging, and changes in mRNA were measured by reverse transcriptase–polymerase chain reaction. Thymidylate synthase expression decreased following vascular occlusion, and this correlated with cyclin A expression. A similar reduction in dihydropyrimidine dehydrogenase was also seen. There were significant changes in the expression of several hypoxic markers, with carbonic anhydrase-9 showing the greatest response. Gene transcriptional levels were also noted to change following tumour clamping. In this xenograft model, surgically induced tumour ischaemia considerably altered the gene expression profiles of several prognostic and hypoxic markers, suggesting that the degree of tumour ischaemia should be minimised prior to tissue fixation

    Modified Cav1.4 Expression in the Cacna1fnob2 Mouse Due to Alternative Splicing of an ETn Inserted in Exon 2

    Get PDF
    The Cacna1fnob2 mouse is reported to be a naturally occurring null mutation for the Cav1.4 calcium channel gene and the phenotype of this mouse is not identical to that of the targeted gene knockout model. We found two mRNA species in the Cacna1fnob2 mouse: approximately 90% of the mRNA represents a transcript with an in-frame stop codon within exon 2 of CACNA1F, while approximately 10% of the mRNA represents a transcript in which alternative splicing within the ETn element has removed the stop codon. This latter mRNA codes for full length Cav1.4 protein, detectable by Western blot analysis that is predicted to differ from wild type Cav1.4 protein in a region of approximately 22 amino acids in the N-terminal portion of the protein. Electrophysiological analysis with either mouse Cav1.4wt or Cav1.4nob2 cDNA revealed that the alternatively spliced protein does not differ from wild type with respect to activation and inactivation characteristics; however, while the wild type N-terminus interacted with filamin proteins in a biochemical pull-down experiment, the alternatively spliced N-terminus did not. The Cacna1fnob2 mouse electroretinogram displayed reduced b-wave and oscillatory potential amplitudes, and the retina was morphologically disorganized, with substantial reduction in thickness of the outer plexiform layer and sprouting of bipolar cell dendrites ectopically into the outer nuclear layer. Nevertheless, the spatial contrast sensitivity (optokinetic response) of Cacna1fnob2 mice was generally similar to that of wild type mice. These results suggest the Cacna1fnob2 mouse is not a CACNA1F knockout model. Rather, alternative splicing within the ETn element can lead to full-length Cav1.4 protein, albeit at reduced levels, and the functional Cav1.4 mutant may be incapable of interacting with cytoskeletal filamin proteins. These changes, do not alter the ability of the Cacna1fnob2 mouse to detect and follow moving sine-wave gratings compared to their wild type counterparts

    Understanding the limitations of radiation-induced cell cycle checkpoints

    Get PDF
    The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4–6 h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10–20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency
    • …
    corecore