50 research outputs found

    Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    Get PDF
    It has long been recognized that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and, by inference, the primordial disk from which they formed. However, it is not known whether the notable volatile depletions of planetary bodies are a consequence of accretion1 or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3, 4, 5, 6. Here we develop an analytical approach that corrects a major cause of measurement inaccuracy inherent in conventional methods, and show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour, followed by vapour escape during accretionary growth of planetesimals, generates appropriate residual compositions. Our modelling implies that the isotopic compositions of magnesium, silicon and iron, and the relative abundances of the major elements of Earth and other planetary bodies, are a natural consequence of substantial (about 40 per cent by mass) vapour loss from growing planetesimals by this mechanism

    Fractionation of Some Abundant Lithophile Element Ratios in Chondrites

    No full text

    Neoproterozoic tectonic and magmatic episodes in the NW sector of Borborema Province, NE Brazil, during assembly of Western Gondwana

    No full text
    The Medio Coreau domain of NE Brazil is located along the northwest margin of Borborema Province, the western branch of a Brasiliano/Pan-African collisional belt that formed during the assembly of Western Gondwana. The early Paleoproterozoic basement of the Medio Coreau domain is composed of migmatitic gneisses and juvenile granulites, overlain by late Paleoproterozoic and Neoproterozoic rocks intruded by syn- to post-tectonic Brasiliano granitoids. According to integrated structural and geochronological data (U-Pb zircon and monazite ages), the Neoproterozoic tectonic evolution of the Medio Coreau is characterized by low-angle thrusting and transcurrent deformation. U-Pb geochronological data from plutons intruded during this compressional regime indicate the collisional evolution began at approximately 622 Ma and continued until about 591 Ma. The continuation of convergence until approximately 560 Ma resulted in the formation of NE-SW and E-W shear zones within the Borborema Province and adjoining West African provinces. The final stage of the ductile tectonism was characterized by uplift and high-angle fault generation between approximately 560 and 545 Ma. The last tectonic event was an extensional phase, resulting in the formation of the Jaibaras graben and intrusion of post-orogenic granites at around 532 Ma. (c) 2007 Elsevier Ltd. All rights reserved.25327128
    corecore