17 research outputs found
Human embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning
Transplantation of neural progenitors derived from human embryonic stem cells (hESCs) provides a potential therapy for ischemic stroke. However, poor graft survival within the host environment has hampered the benefits and applications of cell-based therapies. The present investigation tested a preconditioning strategy to enhance hESC tolerance, thereby improving graft survival and the therapeutic potential of hESC transplantation. UC06 hESCs underwent neural induction and terminal differentiation for up to 30 days, becoming neural lineage cells, exhibiting extensive neurites and axonal projections, generating synapses and action potentials. To induce a cytoprotective phenotype, hESC-derived neurospheres were cultured at 0.1% oxygen for 12 h, dissociated and plated for terminal differentiation under 21% oxygen. Immunocytochemistry and electrophysiology demonstrated the ‘hypoxic preconditioning' promoted neuronal differentiation. Western blotting revealed significantly upregulated oxygen-sensitive transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α, while producing a biphasic response within HIF targets, including erythropoietin, vascular endothelial growth factor and Bcl-2 family members, during hypoxia and subsequent reoxygenation. This cytoprotective phenotype resulted in a 50% increase in both total and neural precursor cell survival after either hydrogen peroxide insult or oxygen–glucose deprivation. Cellular protection was maintained for at least 5 days and corresponded to upregulation of neuroprotective proteins. These results suggest that hypoxic preconditioning could be used to improve the effectiveness of human neural precursor transplantation therapies
The effect of surgically induced ischaemia on gene expression in a colorectal cancer xenograft model
Delays in tissue fixation following tumour vascular clamping and extirpation may adversely affect subsequent protein and mRNA analysis. This study investigated the effect of surgically induced ischaemia in a xenograft model of a colorectal cancer on the expression of a range of prognostic, predictive, and hypoxic markers, with a particular emphasis on thymidylate synthase. Vascular occlusion of human tumour xenografts by D-shaped metal clamps permitted defined periods of tumour ischaemia. Alterations in protein expression were measured by immunohistochemistry and spectral imaging, and changes in mRNA were measured by reverse transcriptase–polymerase chain reaction. Thymidylate synthase expression decreased following vascular occlusion, and this correlated with cyclin A expression. A similar reduction in dihydropyrimidine dehydrogenase was also seen. There were significant changes in the expression of several hypoxic markers, with carbonic anhydrase-9 showing the greatest response. Gene transcriptional levels were also noted to change following tumour clamping. In this xenograft model, surgically induced tumour ischaemia considerably altered the gene expression profiles of several prognostic and hypoxic markers, suggesting that the degree of tumour ischaemia should be minimised prior to tissue fixation
The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B
Butyrate response factor (BRF1) belongs to the Tis11 family of CCCH zinc-finger proteins, which bind to mRNAs containing an AU-rich element (ARE) in their 3′ untranslated region and promote their deadenylation and rapid degradation. Independent signal transduction pathways have been reported to stabilize ARE-containing transcripts by a process thought to involve phosphorylation of ARE-binding proteins. Here we report that protein kinase B (PKB/Akt) stabilizes ARE transcripts by phosphorylating BRF1 at serine 92 (S92). Recombinant BRF1 promoted in vitro decay of ARE-containing mRNA (ARE-mRNA), yet phosphorylation by PKB impaired this activity. S92 phosphorylation of BRF1 did not impair ARE binding, but induced complex formation with the scaffold protein 14-3-3. In vivo and in vitro data support a model where PKB causes ARE-mRNA stabilization by inactivating BRF1 through binding to 14-3-3
Identification of an erythroid-enriched endoribonuclease activity involved in specific mRNA cleavage
Stability of the human α–globin mRNA is conferred by a ribonucleoprotein complex termed the α–complex, which acts by impeding deadenylation. Using our recently devised in vitro decay assay, we demonstrate that the α–complex also functions by protecting the 3′–untranslated region (3′-UTR) from an erythroid-enriched, sequence-specific endoribonuclease activity. The cleavage site was mapped to a region protected by the α–complex and is regulated by the presence of the α–complex. Similar endoribonuclease cleavage products were also detected in erythroid cells expressing an exogenous α–globin gene. Nucleotide substitution of the target sequence renders the RNA refractory to the endoribonuclease activity. Insertion of the target sequence onto a heterologous RNA confers sequence-specific cleavage on the chimeric RNA, demonstrating the sequence specificity of this activity. We conclude that the α–complex stabilizes the α–globin mRNA in erythroid cells by a multifaceted approach, one aspect of which is to protect the 3′–UTR from specific endoribonuclease cleavage