13 research outputs found

    Direct measurement of thermal conductivity in solid iron at planetary core conditions

    Get PDF
    The conduction of heat through minerals and melts at extreme pressures and temperatures is of central importance to the evolution and dynamics of planets. In the cooling Earth’s core, the thermal conductivity of iron alloys defines the adiabatic heat flux and therefore the thermal and compositional energy available to support the production of Earth’s magnetic field via dynamo action1, 2, 3. Attempts to describe thermal transport in Earth’s core have been problematic, with predictions of high thermal conductivity4, 5, 6, 7 at odds with traditional geophysical models and direct evidence for a primordial magnetic field in the rock record8, 9, 10. Measurements of core heat transport are needed to resolve this difference. Here we present direct measurements of the thermal conductivity of solid iron at pressure and temperature conditions relevant to the cores of Mercury-sized to Earth-sized planets, using a dynamically laser-heated diamond-anvil cell11, 12. Our measurements place the thermal conductivity of Earth’s core near the low end of previous estimates, at 18–44 watts per metre per kelvin. The result is in agreement with palaeomagnetic measurements10 indicating that Earth’s geodynamo has persisted since the beginning of Earth’s history, and allows for a solid inner core as old as the dynamo

    Hydrous silicate melt at high pressure

    No full text
    The structure and physical properties of hydrous silicate melts and the solubility of water in melts over most of the pressure regime of Earth\u27s mantle (up to 136 GPa) remain unknown. At low pressure (up to a few gigapascals) the solubility of water increases rapidly with increasing pressure, and water has a large influence on the solidus temperature, density, viscosity and electrical conductivity. Here we report the results of first-principles molecular dynamics simulations of hydrous MgSiO melt. These show that pressure has a profound influence on speciation of the water component, which changes from being dominated by hydroxyls and water molecules at low pressure to extended structures at high pressure. We link this change in structure to our finding that the water-silicate system becomes increasingly ideal at high pressure: we find complete miscibility of water and silicate melt throughout almost the entire mantle pressure regime. On the basis of our results, we argue that a buoyantly stable melt at the base of the upper mantle would contain approximately 3 wt% water and have an electrical conductivity of 18 S m , and should therefore be detectable by means of electromagnetic sounding. ©2008 Nature Publishing Group. 3 -

    Pressure driven spin transition in siderite and magnesiosiderite single crystals

    No full text
    Iron-bearing carbonates are candidate phases for carbon storage in the deep Earth and may play an important role for the Earth’s carbon cycle. To elucidate the properties of carbonates at conditions of the deep Earth, we investigated the pressure driven magnetic high spin to low spin transition of synthetic siderite FeCO3_3 and magnesiosiderite (Mg0.74_{0.74}Fe0.26_{0.26})CO3_3 single crystals for pressures up to 57 GPa using diamond anvil cells and x-ray Raman scattering spectroscopy to directly probe the iron 3d electron configuration. An extremely sharp transition for siderite single crystal occurs at a notably low pressure of 40.4 ± 0.1 GPa with a transition width of 0.7 GPa when using the very soft pressure medium helium. In contrast, we observe a broadening of the transition width to 4.4 GPa for siderite with a surprising additional shift of the transition pressure to 44.3 ± 0.4 GPa when argon is used as pressure medium. The difference is assigned to larger pressure gradients in case of argon. For magnesiosiderite loaded with argon, the transition occurs at 44.8 ± 0.8 GPa showing similar width as siderite. Hence, no compositional effect on the spin transition pressure is observed. The spectra measured within the spin crossover regime indicate coexistence of regions of pure high- and low-spin configuration within the single crystal
    corecore