77 research outputs found

    Ecological Niche Dimensionality and the Evolutionary Diversification of Stick Insects

    Get PDF
    The degree of phenotypic divergence and reproductive isolation between taxon pairs can vary quantitatively, and often increases as evolutionary divergence proceeds through various stages, from polymorphism to population differentiation, ecotype and race formation, speciation, and post-speciational divergence. Although divergent natural selection promotes divergence, it does not always result in strong differentiation. For example, divergent selection can fail to complete speciation, and distinct species pairs sometimes collapse (‘speciation in reverse’). Widely-discussed explanations for this variability concern genetic architecture, and the geographic arrangement of populations. A less-explored possibility is that the degree of phenotypic and reproductive divergence between taxon pairs is positively related to the number of ecological niche dimensions (i.e., traits) subject to divergent selection. Some data supporting this idea stem from laboratory experimental evolution studies using Drosophila, but tests from nature are lacking. Here we report results from manipulative field experiments in natural populations of herbivorous Timema stick insects that are consistent with this ‘niche dimensionality’ hypothesis. In such insects, divergent selection between host plants might occur for cryptic colouration (camouflage to evade visual predation), physiology (to detoxify plant chemicals), or both of these niche dimensions. We show that divergent selection on the single niche dimension of cryptic colouration can result in ecotype formation and intermediate levels of phenotypic and reproductive divergence between populations feeding on different hosts. However, greater divergence between a species pair involved divergent selection on both niche dimensions. Although further replication of the trends reported here is required, the results suggest that dimensionality of selection may complement genetic and geographic explanations for the degree of diversification in nature

    Arachidonic Acid but not Eicosapentaenoic Acid (EPA) and Oleic Acid Activates NF-κB and Elevates ICAM-1 Expression in Caco-2 Cells

    Get PDF
    In patients with inflammatory bowel disease (IBD), intestinal activation of the transcription factor NF-κB as well as intercellular adhesion molecule (ICAM)-1 expression, which is involved in recruiting leukocytes to the side of inflammation is increased. Moreover, colonic arachidonic acid (ARA) proportions are increased and oleic acid (OA) proportions are decreased. Fish oils are protective in IBD patients however, a side-by-side comparison between effects of fish oils, ARA and OA has not been made. We therefore, compared effects of eicosapentaenoic acid (EPA) versus ARA and OA on ICAM-1 expression in Caco-2 enterocytes. To validate our model we showed that dexamethasone, sulfasalazine and PPARα (GW7647) or PPARγ (troglitazone) agonists significantly lowered ICAM-1 expression. ICAM-1 expression of non-stimulated and cytokine stimulated Caco-2 cells cultured for 22 days with ARA was significant higher as compared to EPA and OA. Furthermore, ARA increased NF-κB activation in a reporter cell-line as compared to EPA. Antibody array analysis of multiple inflammatory proteins particularly showed an increased monocyte chemotactic protein (MCP)-1 and angiogenin production and a decreased interleukin (IL)-6 and IL-10 production by ARA as compared to EPA. Our results showed that ARA but not EPA and OA activates NF-κB and elevates ICAM-1 expression in Caco-2 enterocytes. It suggests that replacement of ARA by EPA or OA in the colon mucosa might have beneficial effects for IBD patients. Finally, we suggest that the pro-inflammatory effects of ARA versus EPA and OA are not related to PPARγ activation and/or eicosanoid formation

    Zur Entstehung von Längswirbeln in Grenzschichten

    No full text
    • …
    corecore