41 research outputs found

    Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions

    Get PDF
    The interactions between biochemical processes and mechanical signaling play important roles during various cellular processes such as wound healing, embryogenesis, metastasis, and cell migration. While traditional traction force measurements have provided quantitative information about cell matrix interactions in two dimensions, recent studies have shown significant differences in the behavior and morphology of cells when placed in three-dimensional environments. Hence new quantitative experimental techniques are needed to accurately determine cell traction forces in three dimensions. Recently, two approaches both based on laser scanning confocal microscopy have emerged to address this need. This study highlights the details, implementation and advantages of such a three-dimensional imaging methodology with the capability to compute cellular traction forces dynamically during cell migration and locomotion. An application of this newly developed three-dimensional traction force microscopy (3D TFM) technique to single cell migration studies of 3T3 fibroblasts is presented to show that this methodology offers a new quantitative vantage point to investigate the three-dimensional nature of cell-ECM interactions

    Secure Best Arm Identification in Multi-Armed Bandits

    No full text
    International audienceThe stochastic multi-armed bandit is a classical decision making model, where an agent repeatedly chooses an action (pull a bandit arm) and the environment responds with a stochastic outcome (reward) coming from an unknown distribution associated with the chosen action. A popular objective for the agent is that of identifying the arm with the maximum expected reward, also known as the best-arm identification problem. We address the inherent privacy concerns that occur in a best-arm identification problem when outsourcing the data and computations to a honest-but-curious cloud.Our main contribution is a distributed protocol that computes the best arm while guaranteeing that (i) no cloud node can learn at the same time information about the rewards and about the arms ranking, and (ii) by analyzing the messages communicated between the different cloud nodes, no information can be learned about the rewards or about the ranking. In other words, the two properties ensure that the protocol has no security single point of failure. We rely on the partially homomorphic property of the well-known Paillier's cryptosystem as a building block in our protocol. We prove the correctness of our protocol and we present proof-of-concept experiments suggesting its practical feasibility
    corecore