22 research outputs found

    Framework for strategic wind farm site prioritisation based on modelled wolf reproduction habitat in Croatia

    Get PDF
    In order to meet carbon reduction targets, many nations are greatly expanding their wind power capacity. However, wind farm infrastructure potentially harms wildlife, and we must therefore find ways to balance clean energy demands with the need to protect wildlife. Wide-ranging carnivores live at low density and are particularly susceptible to disturbance from infrastructure development, so are a particular concern in this respect. We focused on Croatia, which holds an important population of wolves and is currently planning to construct many new wind farms. Specifically, we sought to identify an optimal subset of planned wind farms that would meet energy targets while minimising potential impact on wolves. A suitability model for wolf breeding habitat was carried out using Maxent, based on six environmental variables and 31 reproduction site locations collected between 1997 and 2015. Wind farms were prioritised using Marxan to find the optimal trade-off between energy capacity and overlap with critical wolf reproduction habitat. The habitat suitability model predictions were consistent with the current knowledge: probability of wolf breeding site presence increased with distance to settlements, distance to farmland and distance to roads and decreased with distance to forest. Spatial optimisation showed that it would be possible to meet current energy targets with only 31% of currently proposed wind farms, selected in a way that reduces the potential ecological cost (overall predicted wolf breeding site presence within wind farm sites) by 91%. This is a highly efficient outcome, demonstrating the value of this approach for prioritising infrastructure development based on its potential impact on wide-ranging wildlife species

    The avian and wildlife costs of fossil fuels and nuclear power

    No full text
    Environmentalists and environmental scientists have criticized wind energy in various forums for its negative impacts on wildlife, especially birds. This article highlights that nuclear power and fossil-fuelled power systems have a host of environmental and wildlife costs as well, particularly for birds. Therefore, as a low-emission, low-pollution energy source, the wider use of wind energy can save wildlife and birds as it displaces these more harmful sources of electricity. The paper provides two examples: one relates to a calculation of avian fatalities across wind electricity, fossil-fueled, and nuclear power systems in the entire United States. It estimates that wind farms are responsible for roughly 0.27 avian fatalities per gigawatt-hour (GWh) of electricity while nuclear power plants involve 0.6 fatalities per GWh and fossil-fueled power stations are responsible for about 9.4 fatalities per GWh. Within the uncertainties of the data used, the estimate means that wind farm-related avian fatalities equated to approximately 46,000 birds in the United States in 2009, but nuclear power plants killed about 460,000 and fossil-fueled power plants 24 million. A second example summarizes the wildlife benefits from a 580-MW wind farm at Altamont Pass in California, a facility that some have criticized for its impact on wildlife. The paper lastly highlights other social and environmental benefits to wind farms compared to other sources of electricity and energy
    corecore