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ABSTRACT 

In order to meet carbon reduction targets, many nations are greatly expanding their wind power capacity. However, 

wind farm infrastructure potentially harms wildlife, and we must therefore find ways to balance clean energy demands 

with the need to protect wildlife. Wide-ranging carnivores live at low density and are particularly susceptible to 

disturbance from infrastructure development, so are a particular concern in this respect.  We focused on Croatia, which 

holds an important population of wolves, and is currently planning to construct many new windfarms. Specifically, we 

sought to identify an optimal subset of planned wind farms that would meet energy targets while minimising potential 

impact on wolves. A suitability model for wolf breeding habitat was carried out using Maxent, based on 6 

environmental variables and 31 reproduction site locations collected between 1997 and 2015. Wind farms were 

prioritised using Marxan to find the optimal trade-off between energy capacity and overlap with critical wolf 

reproduction habitat. The habitat suitability model predictions were consistent with current knowledge: probability of 

wolf breeding site presence increased with distance to settlements, distance to farmland and distance to roads, and 

decreased with distance to forest. Spatial optimisation showed that it would be possible to meet current energy targets 

with only 31% of currently proposed wind farms, selected in way that reduces the potential ecological cost (overall 

predicted wolf breeding site presence within wind farm sites) by 91%. This is a highly efficient outcome, demonstrating 

the value of this approach for prioritising infrastructure development based on its potential impact on wide-ranging 

wildlife species. 
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1. INTRODUCTION 

Wind energy has many environmental advantages and represents an opportunity to mitigate anthropogenic climate 

change (Sims et al. 2003, Edenhofer et al. 2011). However, it also has several environmental drawbacks, mainly related 

to the large amount of land required for its implementation (Kiesecker et al. 2011) and to the impacts it may have on 

several wildlife species. These species include: birds and bats, marine mammals, and large terrestrial species such as 

reindeer (Rangifer tarandus), red deer (Cervus elaphus), wolverine (Gulo gulo), Eurasian brown bear (Ursus arctos) 

and wolf (Canis lupus) (Drewitt and Langston 2006, Madsen et al. 2006, Kunz et al. 2007, Helldin et al. 2012, Colman, 

et al. 2013, Voigt et al. 2015). In particular, wind plants can have a negative impact on wolf breeding success (Àlvares 

et al. 2011, Helldin et al. 2012, Álvares et al. in press). For example, Àlvares et al. (2011) show that during the 

construction and operation phases of one wind power plant, wolves tended to abandon reproduction sites and have a 

decreased reproduction rate in areas closer than 2 km from the nearest turbine. Moreover, in two case studies in 

Portugal, wolf breeding parameters were monitored in a 15-year-long period before, during and after the construction of 

wind farms (Álvares et al. in press). In this study, the authors showed that, during the construction phase, wolves kept 

breeding in the wind farms area with decreased reproduction rate, while, during the operation phase, wolves started 

selecting reproduction sites located at least 4 km away from the nearest turbine (Álvares et al. in press). GPS-Telemetry 

data also showed shifts of home ranges partially away from wind power plants (Álvares et al. in press). 

The reasons behind the impact of wind farms on wolves are mainly related to habitat changes. Several studies have 

shown that wolves tend to locate their dens in forested areas and avoid relatively high density of roads, human-made 

structures and human disturbance, particularly during homesite selection (Sazatornil et al. 2016, Theuerkauf et al. 2003, 

Karlsson et al. 2007, Person and Russell 2009, Houle et al. 2010, Iliopoulos et al. 2014). Besides the installation of 

turbines, wind farms require the construction of roads, transformers, substations and transmission lines, which cause 

habitat loss and fragmentation (Kuvlesky Jr et al. 2007, Àlvares et al. 2011, Northrup and Wittemyer 2013). Access 

roads can increase the chance of wolf collisions with vehicles and facilitate the access of poachers into wolf habitat 

(Person and Russell 2008, Àlvares et al. 2011, Helldin et al. 2012). Between 1986 and 2001, roadkills and illegal 

killings constituted nearly 90% of reported mortality cases in Croatia (Huber et al. 2002). Moreover, despite the lack of 

evidence, Helldin et al. (2012) speculated that the noise produced by wind turbines may disturb vocal communication in 

terrestrial animals, including wolf howling. It has been shown that howling in wolves has several important functions 

that tend to peak during the breeding season, including territorial defence and coordination of movements among 

separated packmates (Harrington et al. 2003, Mech and Boitani 2003). 

In Croatia, wind energy has been identified as the main source of renewable energy to be implemented by 2030 (Sedlar 

et al. 2011). The current wind power installed capacity, as of March 2016, is 452.75 MW (Anonymous 2015). However, 

in order to meet the target of the Directive 2009/28/EC of the European Parliament, and according to the Energy 

Strategy for the Republic of Croatia (Official Gazette 130/09), wind farms have to reach a total installed capacity of 

1,200 MW by 2020. To reach this target, a further installed capacity of 747.25 MW is needed. Notwithstanding, 39 

wind farms, with a total installed capacity of 1,918.8 MW, are planned to be built (Anonymous 2015). Therefore, they 

would provide more than twice as much installed capacity as needed to reach the target set for 2020. Moreover, the vast 

majority of wind farms are located in the wolf distribution range (Fig 1).  



 

Fig.1 Distribution of wind farms and wolves in Croatia. Coordinates are in metres (HTRS96/Croatia TM). 

The grey wolf (Canis lupus) in Croatia is part of the Dinaric-Balkan population, which spreads across 10 countries in 

south-east Europe and include circa 3,900 individuals (Kaczensky et al. 2013). With approximately 200 wolves (168-

219) (Kusak and Huber 2010), Croatia occupies the western part of the population (Kaczensky et al. 2013). As such, it 

represents a particularly important area for European wolves, since it allows the connection with the Alpine and the 

Italian Peninsula populations (Fabbri et al. 2014, Ražen et al. 2015). Although the wolf population in Croatia has been 

relatively stable in the last 10 years, since 2011 it is undergoing a gradual decline in abundance (Jeremić et al. 2014, 

Kaczensky et al. 2013). The main causes of this contraction are negative public attitudes and persecution (Majić and 

Bath 2010), and habitat loss and fragmentation, due to the construction of major infrastructure like highways and wind 

energy plants (Kusak et al 2009a, Kaczensky et al. 2013).  

Because of the potentially negative impacts of wind farms on biodiversity, many studies have given particular attention 

to developing and implementing tools for wind farm spatial planning and prioritisation (Vasilakis et al. 2016, Bright et 

al. 2008, Bastos et al. 2015, Baban and Parry 2001, Punt et al. 2009, Aydin et al. 2010, Tegou et al. 2010, Drechsler et 

al. 2011, Baltas and Dervos 2012, Göke and Lamp 2012). Adopted approaches include the use of species sensitivity 

maps (Vasilakis et al. 2016, Bright et al. 2008), integrative dynamic modelling of habitat and impacts (Bastos et al. 

2015), multiple-criteria decision analysis (Tegou et al. 2010), fuzzy-logic-based methods (Aydin et al. 2010), numerical 

optimisation (Punt et al. 2009, Drechsler et al. 2011), and the use of spatial planning software such as Marxan (Göke 

and Lamp 2012). The main environmental parameters considered were nature reserves and conservation areas, but 

many studies overlooked the actual distribution of species and habitats, especially outside such areas. For these reasons, 



research on the localisation of infrastructure like wind farms and on their effects on ungulates and large carnivores is 

strongly needed (Gortazar 2012, Helldin et al. 2012). This study presents the first habitat suitability model for wolf 

breeding habitat in Croatia. We use the output of the model to inform the strategic prioritisation of proposed wind 

farms, in order to minimise potential impacts on wolves while meeting energy targets. This framework can be adopted 

for other infrastructure and can be extended to multiple wildlife species. 

  



2. METHODS 

2.1 Data Collection and Preparation 

The locations of wolf reproduction sites from 11 packs were collected in four main areas (Gorski kotar, Dalmatia, 

Plitvice and Velebit) from April to September between 1997 and 2015. Reproduction sites (also known as homesites or 

breeding sites) are areas associated with pup rearing, and may be either dens and/or rendezvous sites (Harrington and 

Mech 1978). Dens are the sites where wolf pups are raised during the first 8 weeks from birth, while rendezvous sites 

are areas above ground where pups are raised between 8 and 20 weeks of age, and include play areas and bedding 

(Mech 1970, Packard 2003). While dens were located through direct observations, with the help of GPS and VHF-

telemetry data, rendezvous sites were identified using the simulated howling survey method, following the 

recommendations of Harrington and Mech (1982). All howling surveys were carried out between July and September. 

During this time, the packs are still relatively sedentary, the response rate is high, and young wolf howls are more likely 

to be distinguishable from adults’ (Harrington and Mech 1982, Harrington et al. 2003, Packard 2003). A rendezvous site 

was considered as such when the presence of pups was confirmed either by howling or by other signs, such as direct 

observation, camera trap photos, dead pups or footprints. Once the approximate area of a rendezvous site was found, its 

location was estimated by experienced researchers through repeated close approaches to responding pups, up to circa 

200 metres. Some wolves in the population were tracked with GPS collars during the study period (Kusak et al. 2005, 

Kusak 2010). GPS locations from these wolves were also used to locate rendezvous sites. 

As wolves can use the same rendezvous site in different years (Capitani et al. 2006), locations that were closer than 500 

metres were assumed to be part of the same site and were excluded from our sample as suggested by Bassi et al. (2015). 

Moreover, only one point per year was selected for each pack. This was a conservative measure to minimise the 

potential effect of pseudo-replication and avoid overestimating the importance of the variables associated with those 

sites. 

2.2 Model predictors and wind farms data 

Six environmental variables were chosen as potential predictors for wolf breeding habitat based on other similar studies 

(Corsi et al. 1999, Theuerkauf et al. 2003, Capitani et al. 2006, Ahmadi et al. 2013). Variables were: distance to 

settlements, distance to farmland (i.e. arable land, permanent cropland, livestock farming and permanent pastures), 

distance to roads (including unpaved forest roads), distance to forest (cells within forest assigned 0), altitude, and slope. 

For all these variables a 250x250 m ASCII grid was created for the whole of Croatia using ArcMap 10.2. All distances 

were calculated from the centroid of the cells. 

Correlation coefficients (R) were calculated among all layers using the Band Collection Statistics tool in ArcMap 10.2, 

in order to avoid collinearity and, thus, the distortion of variables’ relative contribution in determining habitat suitability 

(Dormann et al. 2013). The threshold value to discriminate correlated variables was set to R>0.7 (Dormann et al. 2013, 

Kramer‐Schadt et al. 2013, Syfert et al. 2013). 

The data from which these variables were created were obtained from different sources. In particular, altitude was 

obtained from a Digital Elevation Model (DEM) made available by the Croatian State Geodetic Administration (SGA). 

Slope was derived from the same DEM using the “Slope” tool in ArcMap 10.2. Distance to roads, updated to 2006, was 

obtained from a digital topographic map issued by the same institution. Distance to settlements, distance to farmland 

and distance to forest were obtained from the 2006 Croatian National Habitat Classification (Official Gazette 7/06). 



Finally, the locations of wind turbines within each wind farm were obtained from the Department of Renewable 

Resources and Energy Efficiency of the Croatian Ministry of Economy, Labour and Entrepreneurship (Anonymous 

2015). 

2.3 Habitat Suitability Modelling 

The habitat suitability model was performed using the presence-only Species Distribution Model (SDM) Maxent 

(Version 3.3.3) (Phillips et al. 2006). Maxent models habitat suitability by identifying the maximum entropy 

distribution of a species’ presence localities based on user-specified environmental variables (Phillips et al. 2006).The 

program provides a habitat suitability map together with variables’ response curves and model evaluation data including 

the area under the Receiver Operating Characteristic curve (AUC) and the variables’ permutation importance. The AUC 

quantifies the predictive performance of the model, with an AUC of 0.5 indicating a random distribution of presence 

points, and an AUC tending towards 1 indicating increasing discrimination of presence points compared to random 

locations (Phillips et al. 2006). The permutation importance is a relative measure of how much the AUC changes when 

the values of a variable at occurrence and background locations are randomly permuted (Phillips 2005). 

Before starting the simulations, occurrence locations and environmental variables were loaded into the model. In 

Maxent, occurrence locations are treated as cells, corresponding to the cells of the predictors in which they fall. In this 

analysis, the cell size was 250x250 metres. The model was run for 15 replications. In each replication, 25% of presence 

localities were randomly set aside and used as test points to compute the main Maxent outputs. In order to determine the 

AUC, Maxent compares the presence localities with a set of pseudo-absence points randomly selected from a user-

specified area (Phillips et al. 2006). However, when the occurrence data are potentially biased (e.g. close to roads with 

easier research access), in order to avoid such bias to be represented in the whole model, the pseudo-absences can be 

selected from an area that shares the same potential bias as the presence points (Zaniewski et al. 2002, Dudík et al. 

2005, Phillips et al. 2009). Hence, in this study, pseudo-absences were selected from the sampling distribution of wolf 

research carried out since 1997 as suggested by Fourcade et al. (2014). 

After running the model, the effect of pseudo-replication potentially resulting from considering more than one homesite 

per pack was examined by running a set of 20 test-models in Maxent inputting only one homesite per wolf pack (i.e. 11 

points) randomly selected each time. These models were run using the same parameters as the main output of this study. 

Selecting one point per pack allows pseudo-replication to be removed from the test-models, which were then compared 

to the main output map, using the spatial correlation coefficient calculated with the Band Collection Statistics tool in 

ArcMap 10.2. The aim of this approach was to test that the output of the test-models would not differ substantially from 

the main output. Additionally, in order to control for the effect of potential spatial autocorrelation among reproduction 

sites, the Moran’s Index on model residuals (1 – probability of suitability in occurrence locations) was calculated over 

30 distance bands (from 2 to 60 km) between reproduction sites, using the Incremental Spatial Autocorrelation tool in 

ArcMap 10.2. This approach determines whether the values of residuals are located randomly across space or in some 

sort of spatial clustering, and it has already been used to test autocorrelation in Maxent outputs (Mateo-Tomás and Olea 

2010, De Marco et al. 2008, Dormann et al. 2007). 

2.4 Wind Farm Site Prioritisation 

The strategic prioritisation of planned wind farm sites was carried out using Marxan (Version 2.43), a program 

originally designed for protected area spatial planning (Pressey et al. 2007, Ardron et al. 2008), but suitable for a wide 



range of applications (Rondinini and Boitani 2007, Ban and Vincent 2009, Göke and Lamp 2012). The program 

identifies optimal configurations of complementary areas (called “Planning Units”) in order to meet specific objectives 

at the minimum political, social or economic cost (Pressey et al. 2007, Ardron et al. 2008). In order to do so, Marxan 

applies the simulated annealing optimisation algorithm over many repeated runs, producing two main types of output: 

the best solution among all runs and the irreplaceability score. The irreplaceability score is the number of times in 

which each planning unit was selected among all runs (Ardron et al. 2008).  

In this study, Marxan was used in an unusual way, similar to the approach adopted by Göke and Lamp (2012). Wind 

farms were considered as Marxan planning units, each of which contributes to the wind energy production targets at an 

ecological cost on wolf breeding habitat. According to some observations made on wolf packs in Portugal, wolves avoid 

breeding within 4 km of operational wind farms (Alvares et al. in press). Thus, based on currently available information 

and adopting a precautionary approach, a buffer of 4 km was added around each existing and planned wind turbine. The 

cost of each planning unit was determined using the output of the Maxent model, which provides a spatial measure of 

ecological suitability. The ecological cost of each planning unit was calculated by summing the predicted suitability 

values of its grid cells. Hence, the impact of wind farms on wolves was assumed to be proportional to the total habitat 

suitability across cells within the boundaries of the buffer strip. The sum of the cells takes into consideration both the 

area and the average cell value of each planning unit. For example, a wind farm built over a bigger area would have a 

higher impact than a smaller wind farm ceteris paribus. Similarly, a planning unit with a high average cell suitability 

value would have a higher impact than a similarly sized but on average less suitable unit. Lastly, in the cost 

determination, the presence of operating wind farms was also considered. As such, in areas where operating and 

proposed wind farms overlapped, the cost of adding a new wind farm was considered nil. This decision was made based 

on the assumption that if a planned wind farm is built around other wind farms already in operation, then its additional 

ecological cost on wolves would be lower than the cost of building that same wind farm in a previously undisturbed 

area. 

On the other hand, each proposed new wind farm contributes to the energy production targets set in the Croatian energy 

strategy. The installed capacity target for all planning units in Marxan was set to 747.25 MW and was determined by 

removing the already installed capacity (452.75 MW) from the 2020 installed capacity target of 1,200 MW (Energy 

Strategy for the Republic of Croatia - Official Gazette 130/09). The Marxan analysis was run for 100 repetitions, and 

the conservation feature penalty factor, a parameter representing Marxan’s emphasis on meeting a target, was set to 100 

(i.e. sufficiently high for the target to be met in all repetitions). 

  



3.RESULTS 

3.1 Habitat Suitability Modelling 

A total of 31 reproduction sites were found between 1997 and 2015 (Fig 2). Among these, 24 were rendezvous sites and 

7 were dens. Sites were obtained from 11 wolf packs. The values of environmental variables at occurrence locations 

show a very high variability indicated by high standard deviation values (Table 1). Looking at the minimum values, it 

can be seen that some reproduction sites were located very near roads and farmland, while all sites tended to be located 

further from human settlements. Finally, as shown by median values, reproduction sites were mainly found inside or 

very close to the forest, with only two sites outside (respectively 2015 and 250 metres away). The correlation among 

environmental variables, as shown by the spatial correlation coefficients (Appendix 1), was weak in most cases 

(R<0.60) and slightly higher for distance to farmland with altitude (R=0.62), and distance to farmland with distance to 

settlements (R=0.64). However, since all values were below 0.7, all variables were accepted in the model. 

 

Fig. 2 The 31 wolf reproduction site locations collected between 1997 and 2015. Coordinates are in metres 

(HTRS96/Croatia TM). 



 

 

Table 1 Main values for the 6 environmental variables. Min=Minimum value; Max=Maximum value; 

STD=Standard deviation. For “distance to” variables, nil values indicate that a homesite is located in the same cell 

(measuring 250x250 m) of an environmental feature and, thus, do not necessarily pinpoint a distance of 0 metres. 

Variable Min Max Mean Median STD 
Permutation 
Importance 

(%) 

Distance to Settlements 901.39 10960.16 5106.61 4472.14 2757.53 29.48 

Distance to Farmland 0.00 15337.86 5604.21 5505.68 3787.99 14.43 

Distance to Roads 0.00 2610.08 674.88 353.55 625.55 11.86 

Distance to Forest 0.00 2015.56 65.02 0.00 356.12 33.10 

Altitude 285.47 1496.54 867.94 960.53 325.10 8.42 

Slope 0.17 14.39 6.40 5.97 3.69 2.71 



 

 

 

Overall, the model showed good performances, indicated by an AUC of 0.805 (SD=0.072). According to the 

permutation importance values, the most important predictors for wolf reproduction site suitability were distance to 

forest, which was negatively correlated with probability of presence, and distance to settlements, distance to farmland 

and distance to roads, which were all positively correlated with habitat suitability (Table 1, Fig 3). 

 

Fig. 3 Response curves for the 4 main model predictors. The curves show how the reproduction site probability of 

presence changes with each predictor, maintaining all other predictors at their average sample value. The white curves 

represent the mean trends, while the black shades show the standard deviation. In each graph, the X axis shows the 

change in each environmental variable, while the Y axis shows the reproduction site probability of presence. 



 

Based on the predicted habitat suitability map (Fig 4), most suitable areas are found along the Dinaric Mountains and in 

smaller, isolated and currently unoccupied areas in the northern and north-eastern parts of Croatia. In the map, a 

reduction of suitable breeding habitat along roads and settlements can also be noticed. 

 

Fig. 4 Habitat suitability map obtained with Maxent. Darker shades indicate low suitability, lighter shades indicate 

high suitability. Coordinates are in metres (HTRS96/Croatia TM) 

When the output map of the main model was compared to the 20 test-models run with only one point per pack, the 

average value of the spatial autocorrelation coefficient was 0.79 (SD=0.02), while the 20 test-models among themselves 

had an average value of 0.94 (SD=0.04) (Appendix 2). However, the 20 test-models showed, on average, a much lower 

performance (AUC=0.68) and a much higher standard deviation (SD=0.13). The results of the Incremental Spatial 

Autocorrelation on model residuals did not show autocorrelation (Moran’s I included between ± 0.1; z-score <1.35) 

(Appendix 3). For these reasons, the main model was considered adequate. 

3.2 Wind Farm Prioritisation 

Proposed wind farms are mainly located within the current wolf distribution range and overlap with several high quality 

wolf reproduction areas. The Marxan analysis shows that the 2020 target of the Croatian energy strategy could be met 

with only 12 wind farms (Fig 5; Table 2). These correspond to 30.77% of the 39 total proposed wind farms. After wind 

plant selection, the resulting installed capacity would be 748 MW (i.e. 38.98% of the total proposed capacity). With 

respect to the potential impact on wolf breeding habitat, the optimisation would lead to a decrease of 90.97% in 



ecological cost. Thus, 38.98% of proposed installed capacity would hold only 9.03% of the total ecological cost. This 

indicates that Marxan allowed selecting highly cost-efficient wind farms. 

 

Fig. 5 Best solution for the Marxan analysis over 100 repetitions. The number of each wind farm corresponds to the 

numbers in Table 2. Coordinates are in metres (HTRS96/Croatia TM). 

 

Additionally to the best selection, Table 2 also reports the irreplaceability score for each wind farm across 100 runs. 

This output provides less categorical information which could be particularly useful during negotiations and planning 

processes. Moreover, it may be more suitable for the integration of this study with others focusing on different types of 

impacts. 

  



Table 2 Marxan values for all wind farms. Cost=Maxent suitability scores summed across windfarm cells; 

MW=Installed capacity in MW; IS=Marxan Irreplaceability Score; Wind farms in bold correspond to selected wind 

farms in Marxan Best Solution. Percentages show the proportions compared to all wind farms. The ID numbers in this 

table correspond to wind farms shown in figure 5. 

ID Wind Farm Name Cost Cost% MW MW% IS 

1 VE Konavodska brda 92.13 0.94 117 6.10 100 

2 VE Ravno Vrdovo 14.78 0.15 120 6.25 100 

3 VE Rust 135.28 1.38 120 6.25 100 

4 VE Voštane 3.79 0.04 27 1.41 100 

5 VE ZD2P 0.00 0.00 48 2.50 100 

6 VE ZD6 0.00 0.00 20 1.04 100 

7 VE ZD3P 12.74 0.13 33 1.72 98 

8 VE ZD4P 1.91 0.02 18 0.94 94 

9 VE Goli 172.02 1.76 72 3.75 84 

10 VE Glunča 61.61 0.63 23 1.20 76 

11 VE Krš Padene (KPA) 1. faza 203.72 2.08 80 4.17 72 

12 VE Rudine 185.84 1.90 70 3.65 71 

Total for selected wind farms 883.82 
9.03 

(-90.97) 
748 

38.98 
(-61.02) 

- 

13 VE ZD5 8.83 0.09 20 1.04 65 

14 VE Krug - Bikina Glava 80.76 0.82 23 1.20 32 

15 VE Orljak 138.97 1.42 42 2.19 29 

16 Proširenje ZD6 (dio) snage oko 45 MW 152.76 1.56 45 2.35 26 

17 Kompleks male vjetroelektrana Jasenice 78.13 0.80 10 0.52 20 

18 VE Boraja II 172.55 1.76 45 2.35 14 

19 VE Mravinjac 223.96 2.29 57 2.97 7 

20 VE Bila Ploča 163.45 1.67 33 1.72 5 

21 VE Senj 707.42 7.23 186 9.69 3 

22 VE Katuni 228.27 2.33 39 2.03 2 

23 VE Mazin 2 194.95 1.99 20 1.04 1 

24 VE Mideno brdo 133.62 1.36 21 1.09 1 

25 Kompleks vjetroelektrana Udbina 120MW 1824.40 18.64 120 6.25 0 

26 VE Bruvno 388.47 3.97 45 2.35 0 

27 VE Čemernica 282.92 2.89 45 2.35 0 

28 VE Debelo brdo 624.44 6.38 35 1.82 0 

29 VE Kom-Orjak-Greda 157.78 1.61 10 0.52 0 

30 VE Krš Padene-Proširenje 317.00 3.24 42 2.19 0 

31 VE Ljubač - faza 1 123.81 1.26 10 0.52 0 

32 VE Lukovac 266.47 2.72 48 2.50 0 

33 VE Ogorje 410.76 4.20 54 2.81 0 

34 VE Opor 313.10 3.20 33 1.72 0 

35 VE Plašine 286.82 2.93 23.8 1.24 0 

36 VE Rujnica 302.71 3.09 22 1.15 0 

37 VE ST3-1/2 231.19 2.36 33 1.72 0 

38 VE Svilaja 769.29 7.86 64 3.34 0 

39 VE Vučipolje 322.86 3.30 45 2.35 0 

Total for all wind farms 9789.51  100 1918.8 100 - 

  



4.DISCUSSION 

4.1 Framework and Methodological Choices 

The presented framework used an SDM and an optimisation program to predict potential impacts of wind farms on 

wolves and identify the optimal set of wind farms which would contribute to meeting energy targets at the minimum 

possible cost. This study aims to provide a framework to inform the current wind energy development in Croatia, using 

all available information and adopting relatively simple and commonly-used programs, such as Maxent and Marxan. 

Maxent was chosen for several reasons. Being a presence-only SDM, it does not require absence data, which can be 

unreliable and difficult to obtain for elusive and wide-ranging species like wolves (Mech and Boitani 2003, Phillips et 

al. 2006). For species that do not occupy all suitable areas, like the wolf in Croatia (Kaczensky et al. 2013, Chapron 

2014), absence data might be located in unoccupied but suitable habitat (Elith et al. 2011). Thus, an absence data might 

not be indicative of unsuitable habitat and might cause unoccupied suitable areas to be considered unsuitable (Elith et 

al. 2011). Moreover, among the most commonly used presence–only SDMs, Maxent was shown to have high 

performances, particularly at small sample sizes (Hernandez et al. 2006, Wisz et al. 2008). Regardless of this decision, 

the choice of SDM is highly dependent on the type and amount of available data (Hernandez et al. 2006). Thus, other 

methods may be more appropriate in other studies and in different circumstances.  

With regards to wind farm prioritisation, Marxan was chosen as, besides fitting the purpose of this study of meeting 

specific targets while minimising costs (Ball et al. 2009), it is relatively easy to handle and flexible to changing 

situations and regular data updates (Ardron et al. 2008, Göke and Lamp 2012). Unlike other optimisation methods using 

other types of algorithm, Marxan output provides several near-optimal alternatives, as opposed to a single best solution 

(Ardron et al. 2008). In spatial planning, a set of “good” solutions is often preferred to a single one, since it allows 

negotiation among stakeholders and enables the consideration of other factors that could not be included in the first 

analysis (Possingham et al. 2000). For these reasons Marxan was considered the most appropriate program. 

This prioritisation approach may be extended to other infrastructure and to other wide ranging and non-volant species, 

such as ungulates and large carnivores. However, some complications could arise when considering multiple and 

incommensurate costs in optimisation processes (Göke and Lamp 2012). In particular, in order to be minimised, the 

different types of costs have to be merged in a single overall value (Punt et al. 2009, Drechsler et al. 2011, Göke and 

Lamp 2012). As such, each single cost has to be given a subjective weight that reflects its importance in the calculation 

of the total cost. For large carnivores, it may be difficult to determine these weights, since detailed information about 

the extent of wind farms’ impacts on each species are not available. Moreover, once the total cost is minimised, it 

should be verified that the minimisation occurs equally for each single cost and that all costs are satisfactorily 

minimised. For these reasons, particular caution should be used when considering multiple species simultaneously.  

4.2 Habitat Suitability Model 

This study provides the first habitat suitability model for wolf reproduction sites in Croatia. The model showed good 

performance, obtaining an AUC value of 0.805 (Swets 1988, Elith 2000, Hosmer Jr and Lemeshow 2004), comparable 

to that of other similar studies (Ahmadi et al. 2013, Iliopoulos et al. 2014, Bassi et al. 2015). The comparison of this 

model with the 20 test-models run with only one point per pack show a strong correlation (R=0.79). The use of more 

than one reproduction site per pack in the main model allowed a substantial increase in sample size (11 to 31), and 



resulted in a much higher performance compared to the test-models. Moreover, the Incremental Spatial Autocorrelation 

analysis on the residuals did not show spatial clustering against any of the distance bands. For these reasons, any 

potential pseudo-replication which may have been present among reproduction sites was not considered to substantially 

and negatively affect the main output. 

With regards to predictors, some variables in the habitat suitability model were moderately correlated, and their relative 

contributions to the model should therefore be interpreted with caution, as it is impossible to determine which is the 

most important in predicting suitability (Baldwin 2009). For example in this study, distance to settlements and distance 

to farmland were important predictors for habitat suitability. However, since they were the most correlated variables 

(R=0.64), their contributions may not be representative of their independent importance in determining habitat 

suitability. Nevertheless, settlements and farmlands are both related to human activities which deter wolves from 

breeding in their proximity (Sazatornil et al. 2016, Theuerkauf et al. 2003, Kusak et al. 2005, Jędrzejewski et al. 2008, 

Ahmadi et al. 2013, Bassi et al. 2015). Hence, their relative importance may be proportional to the type and extent of 

the disturbance they cause. 

The distance to roads was positively correlated with wolf habitat suitability and was another important variable. 

However, looking at the response curve it can be noticed that, with increasing distance, the suitability increases rapidly, 

reaching a plateau after few hundred meters. This result is consistent with other studies (Theuerkauf et al. 2003, 

Kaartinen et al. 2005, Ahmadi et al. 2013). Hence, it seems that roads are likely to have an effect on breeding habitat 

only for the first few hundred meters. 

Among the environmental predictors, the most influential was distance to forest, as shown in other works (Theuerkauf 

et al. 2003, Ahmadi et al. 2013). Some environmental variables that could potentially have higher contributions, such as 

prey availability and water sources, were not considered in this study, since adequate data were not available. In any 

case, in human dominated regions like Europe, anthropic variables are more likely to play a major role in determining 

habitat suitability (Sazatornil et al. 2016, Mech and Boitani 2003, Ahmadi et al. 2013). 

The habitat suitability map is consistent with the current knowledge about wolf habitat and wolf distribution in Croatia 

(Kaczensky et al. 2013). The main area predicted suitable outside the wolf range in eastern Croatia presents favourable 

environmental conditions for wolf reproduction. However, the absence of the wolf in this area may be explained by the 

fact that it is completely surrounded by farmland, it is isolated by a fenced highway without crossing structures, and it is 

rather far from currently occupied sites. 

In unsuitable areas, especially in the currently occupied range, wolves might still be regularly present. This study only 

models reproduction habitat, and does not consider the winter time, or wolf movements in the breeding season. 

Therefore, although wolves tend to avoid human disturbance for locating dens and rendezvous sites (Sazatornil et al. 

2016, Theuerkauf et al. 2003, Kusak et al. 2005, Jędrzejewski et al. 2008, Ahmadi et al. 2013, Bassi et al. 2015), it is 

still likely that they spend a large part of their time in unsuitable breeding habitat, particularly for feeding (Ciucci et al. 

1997, Kusak et al. 2005). 

In the model, the occurrence localities were collected from 1997 to 2015. This relatively large interval is due to the 

difficulties in wolf data collection, notably in karstic and highly rugged terrains. Hence, the model assumed that general 

habitat conditions did not change substantially between 1997 and 2015. The biggest changes are likely due to two 

highways which were built in Croatia over that period. However, these roads have many wildlife crossing structures, 



and are successful in maintaining habitat connectivity for large carnivores (Kusak et al. 2009a; Kusak et al. 2009b). 

With regards to other variables, forest cover showed an increase of only 2.53% from 1997 to 2015 (Anonymous 2016); 

the total human population decreased by 5.73% from 1996 to 2014, with most of this decline occurring in rural areas; 

and arable land decreased by 8.11% between 1997 and 2012 (Anonymous 2016). The decision to consider these 

changes negligible was consistent with that of other studies (Jędrzejewski et al. 2008). Moreover, several other studies 

seem to have overlooked this type of limitation (Corsi et al. 1999, Treves et al. 2004, Iliopoulos et al. 2014, Bassi et al. 

2015). 

4.3 Wind Farm Prioritisation 

The prioritisation process carried out in this study would potentially lead to a reduction of wind farm impacts on wolf 

breeding habitat of up to 90.97% with a decrease of only 61.02% in potential installed capacity. Cost minimisation may 

not be necessarily achieved by avoiding unsuitable wolf habitat independently of the spatial distribution of the farms 

(e.g. aggregation, scattering). For example, locating proposed wind farms near others already in operation would likely 

reduce their additional impact on the wolf, by avoiding disturbance in new areas. Nonetheless, this may not hold totally 

true in case wolf howling was susceptible to acoustic disturbance from rotating turbines, as it has been proposed 

(Helldin et al. 2012). Furthermore, this conclusion may not be valid for volant species like birds and bats, where it has 

been suggested that turbines should not be located close together, especially near key areas and along flight paths (LAG 

VSW 2014, Drewitt and Langston 2006). Further studies on the impacts of wind farms on wildlife should take into 

consideration their spatial configuration (Drewitt and Langston 2006). 

Although several works have been published on the spatial planning of wind farms (Baban and Parry 2001, Punt et al. 

2009, Aydin et al. 2010, Tegou et al. 2010, Drechsler et al. 2011, Baltas and Dervos 2012, Göke and Lamp 2012), the 

obtained results are highly specific to the area, the type of environment, the nature of the costs, the planning units 

considered, and the method adopted. It is therefore difficult to compare this output and its effectiveness with other 

studies. One limitation of this study was related to the determination of the ecological cost in the areas where two or 

more proposed wind farms overlapped. The Marxan analysis was carried out by assuming that each wind farm would be 

built independently from other farms. However, if two or more proposed wind farms share the area over which they 

may have a potential effect, they would also share the ecological cost. Hence, if considered together, they would have 

the same installed capacity as if both were considered singularly, but they would have a lower cumulative cost. 

Unfortunately, this shortfall could not be prevented, since Marxan cannot handle overlapping planning units (Ardron et 

al. 2008). Nonetheless, the total overlapping area was only around 10%, and it was distributed equally across many 

wind farms. It is, thus, likely that no particular areas would benefit from wind farms being built together in clusters. 

Moreover, this limitation would have existed also in most, if not all, methods used in previous similar studies. 

4.4 Future Implications and Recommendations 

The habitat suitability model carried out in this study offers a better understanding of wolf breeding habitat in Croatia, 

The prioritisation process showed the optimal configuration of wind farms to meet the Croatian target at the lowest 

impact on wolf habitat, and will contribute to a larger environmental impact assessment for wind farms in Croatia. 

However, despite the usefulness of this research, more work is required to improve the accuracy of scientific findings 

and increase the effectiveness of science on policy and decision making. Notably, more effort should be put into the 

identification of more wolf reproduction sites in a more restricted time interval, in order to produce a more accurate 

model for breeding habitat. The qualitative and quantitative impact of wind farms and other infrastructure on wolves 



and other non-volant animals should also be clarified through BACI (Before-After-Control-Impact) studies (Gortazar 

2012, Lovich and Ennen 2013). In the meantime, a precautionary approach should be adopted by minimising potentially 

negative impacts during both construction and operation phases even after strategic planning processes (Helldin et al. 

2012). Potential mitigation measures include closing access roads, or avoid engineering work during wolves’ denning 

periods or activity hours (Àlvares et al. 2011). Finally, more efficient communication and collaboration among 

scientists, politicians and wind power developers would be beneficial. This is essential to enable the adoption of an 

adaptive management approach for wolf monitoring and wind-energy-related decision making. 

In conclusion, this study provides valuable tools for the future conservation of wolves in Croatia, and presents a 

scientific and evidence-based approach for the prioritisation of proposed infrastructure based on their potential impact 

on wide-ranging wildlife species. Although this study adopted this framework for the specific case of wolves in Croatia, 

this approach can be applied to many other similar scenarios. 
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Table A1.1 Correlation coefficients among environmental variables calculated in ArcGIS 10.2. The 

threshold to discriminate correlated variables was R>0.7. 

Variables Altitude 
Distance to 
Farmland 

Distance to 
Forest 

Distance to 
Roads 

Distance to 
Settlements 

Slope 

Altitude 1.00 0.62 -0.29 0.24 0.56 0.58 

Distance to 
Farmland 

0.62 1.00 -0.25 0.25 0.64 0.39 

Distance to 
Forest 

-0.29 -0.25 1.00 -0.08 -0.21 -0.26 

Distance to 
Roads 

0.24 0.25 -0.08 1.00 0.39 0.15 

Distance to 
Settlements 

0.56 0.64 -0.21 0.39 1.00 0.33 

Slope 0.58 0.39 -0.26 0.15 0.33 1.00 



Table A2.1 Comparison between the spatial correlation coefficients and the AUC values of the main model against the 20 test-models. 

Output 
Maps 

Main 
Test 

1 
Test 

2 
Test 

3 
Test 

4 
Test 

5 
Test 

6 
Test 

7 
Test 

8 
Test 

9 
Test 
10 

Test 
11 

Test 
12 

Test 
13 

Test 
14 

Test 
15 

Test 
16 

Test 
17 

Test 
18 

Test 
19 

Test 
20  

AUC 
SD (of 
AUC) 

Main 

 
0.79 0.77 0.75 0.81 0.78 0.80 0.81 0.81 0.76 0.78 0.82 0.79 0.80 0.78 0.78 0.82 0.75 0.77 0.80 0.76 

 

0.805 0.072 

Test 1 0.79 

 
0.84 0.86 0.97 0.98 0.91 0.97 0.93 0.85 0.85 0.95 0.93 0.95 0.89 0.98 0.91 0.97 0.95 0.97 0.95 

 

0.629 0.136 

Test 2 0.77 0.84 

 
0.96 0.94 0.89 0.97 0.86 0.96 0.97 0.96 0.92 0.94 0.93 0.98 0.89 0.94 0.80 0.91 0.90 0.84 

 

0.671 0.127 

Test 3 0.75 0.86 0.96 

 
0.93 0.91 0.92 0.83 0.91 0.97 0.89 0.90 0.95 0.94 0.96 0.89 0.92 0.78 0.87 0.90 0.82 

 

0.763 0.101 

Test 4 0.81 0.97 0.94 0.93 

 
0.98 0.97 0.97 0.98 0.94 0.95 0.99 0.99 0.96 0.97 0.98 0.96 0.93 0.96 0.97 0.96 

 

0.692 0.117 

Test 5 0.78 0.98 0.89 0.91 0.98 

 
0.94 0.96 0.96 0.90 0.90 0.95 0.98 0.94 0.94 0.99 0.93 0.95 0.95 0.97 0.97 

 

0.699 0.128 

Test 6 0.80 0.91 0.97 0.92 0.97 0.94 

 
0.94 0.99 0.95 0.98 0.96 0.96 0.93 0.99 0.95 0.97 0.89 0.96 0.95 0.92 

 

0.695 0.138 

Test 7 0.81 0.97 0.86 0.83 0.97 0.96 0.94 

 
0.96 0.87 0.92 0.97 0.93 0.92 0.91 0.97 0.95 0.97 0.97 0.98 0.97 

 

0.646 0.144 

Test 8 0.81 0.93 0.96 0.91 0.98 0.96 0.99 0.96 

 
0.93 0.97 0.96 0.97 0.94 0.98 0.95 0.96 0.92 0.96 0.96 0.94 

 

0.644 0.143 

Test 9 0.76 0.85 0.97 0.97 0.94 0.90 0.95 0.87 0.93 

 
0.96 0.94 0.95 0.92 0.97 0.90 0.96 0.80 0.91 0.92 0.86 

 

0.724 0.101 

Test 10 0.78 0.85 0.96 0.89 0.95 0.90 0.98 0.92 0.97 0.96 

 
0.96 0.94 0.88 0.97 0.90 0.96 0.85 0.94 0.92 0.90 

 

0.747 0.106 

Test 11 0.82 0.95 0.92 0.90 0.99 0.95 0.96 0.97 0.96 0.94 0.96 

 
0.96 0.93 0.95 0.95 0.98 0.92 0.95 0.97 0.95 

 

0.676 0.139 

Test 12 0.79 0.93 0.94 0.95 0.99 0.98 0.96 0.93 0.97 0.95 0.94 0.96 

 
0.93 0.98 0.97 0.95 0.89 0.93 0.94 0.95 

 

0.715 0.130 

Test 13 0.80 0.95 0.93 0.94 0.96 0.94 0.93 0.92 0.94 0.92 0.88 0.93 0.93 

 
0.93 0.93 0.93 0.89 0.91 0.95 0.87 

 

0.665 0.125 

Test 14 0.78 0.89 0.98 0.96 0.97 0.94 0.99 0.91 0.98 0.97 0.97 0.95 0.98 0.93 

 
0.94 0.97 0.86 0.94 0.94 0.90 

 

0.720 0.106 

Test 15 0.78 0.98 0.89 0.89 0.98 0.99 0.95 0.97 0.95 0.90 0.90 0.95 0.97 0.93 0.94 

 
0.94 0.96 0.97 0.98 0.97 

 

0.686 0.127 

Test 16 0.82 0.91 0.94 0.92 0.96 0.93 0.97 0.95 0.96 0.96 0.96 0.98 0.95 0.93 0.97 0.94 

 
0.87 0.94 0.96 0.90 

 

0.694 0.103 

Test 17 0.75 0.97 0.80 0.78 0.93 0.95 0.89 0.97 0.92 0.80 0.85 0.92 0.89 0.89 0.86 0.96 0.87 

 
0.96 0.96 0.96 

 

0.582 0.160 

Test 18 0.77 0.95 0.91 0.87 0.96 0.95 0.96 0.97 0.96 0.91 0.94 0.95 0.93 0.91 0.94 0.97 0.94 0.96 

 
0.98 0.95 

 

0.660 0.129 

Test 19 0.80 0.97 0.90 0.90 0.97 0.97 0.95 0.98 0.96 0.92 0.92 0.97 0.94 0.95 0.94 0.98 0.96 0.96 0.98 

 
0.94 

 

0.648 0.145 

Test 20 0.76 0.95 0.84 0.82 0.96 0.97 0.92 0.97 0.94 0.86 0.90 0.95 0.95 0.87 0.90 0.97 0.90 0.96 0.95 0.94 

  

0.742 0.119 

Average 0.79 

                 
Test-models average = 0.94 
Test-models SD            = 0.04 

0.69 0.12 

SD 0.02 
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Table A3.1 Results of the Incremental Spatial Autocorrelation calculated in ArcGIS 10.2.  Z-score 

values bigger than 1.65 and smaller than -1.65 indicate significant spatial clustering with a 90% 

confidence level. The distance is the distance between reproduction sites. 

Distance 

(Km) 
Moran's I Expected I Variance Z score P value 

0 - - - - - 

2 0.07 -0.06 0.03 0.74 0.46 

4 0.06 -0.05 0.02 0.72 0.47 

6 0.03 -0.04 0.02 0.54 0.59 

8 0.10 -0.04 0.01 1.35 0.18 

10 0.06 -0.04 0.01 1.06 0.29 

12 0.07 -0.04 0.01 1.23 0.22 

14 0.07 -0.04 0.01 1.21 0.22 

16 0.07 -0.04 0.01 1.31 0.19 

18 -0.02 -0.04 0.01 0.24 0.81 

20 -0.04 -0.04 0.01 -0.03 0.97 

22 -0.05 -0.04 0.01 -0.11 0.91 

24 -0.06 -0.03 0.01 -0.18 0.85 

26 -0.05 -0.03 0.01 -0.16 0.87 

28 -0.08 -0.03 0.01 -0.46 0.64 

30 -0.08 -0.03 0.01 -0.46 0.64 

32 -0.08 -0.03 0.01 -0.46 0.64 

34 -0.08 -0.03 0.01 -0.46 0.64 

36 -0.09 -0.03 0.01 -0.55 0.58 

38 -0.04 -0.03 0.01 -0.10 0.92 

40 -0.04 -0.03 0.01 -0.10 0.92 

42 -0.05 -0.03 0.01 -0.16 0.88 

44 -0.05 -0.03 0.01 -0.24 0.81 

46 0.01 -0.03 0.01 0.59 0.55 

48 0.02 -0.03 0.01 0.66 0.51 

50 0.01 -0.03 0.01 0.54 0.59 

52 0.01 -0.03 0.01 0.57 0.57 

54 0.00 -0.03 0.00 0.45 0.65 

56 0.00 -0.03 0.00 0.45 0.65 

58 0.00 -0.03 0.00 0.41 0.68 

60 0.00 -0.03 0.00 0.41 0.68 

 

 

 

 

 

Figure A3.1. Correlogram of the incremental spatial autocorrelation (based on the table A3).  
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