1,317 research outputs found

    A Comprehensive Single Institutional Review of 2 Years in a Designated Fast-Track Sarcoma Diagnostic Clinic Linked with a Sarcoma Specialist Advisory Group: Meeting the Target but Failing the Task?

    Get PDF
    Background. National guidelines prompted the implementation of a designated two-week wait referral pathway to facilitate the early diagnosis of sarcomas, to improve treatment outcomes. Methods. Patients referred to the Cambridge Sarcoma Diagnostic Clinic between January 2013 and December 2014 were identified through the electronic appointments system. Information was retrospectively retrieved about patient characteristics and details of the diagnostic pathway. Results. 17.3% of patients referred (69/397) were diagnosed with a malignancy. Of these, 59.3% (41/69) had primary sarcomas, 17.4% (12/69) had metastatic cancer, and 23.2% (16/69) had a different primary malignancy. 15% of the 41 sarcomas were 10 cm. Sarcomas diagnosed through this clinic represented 13% (41/315) of sarcomas managed at the centre during the same 2 years. Conclusion. While we achieved the target of 10% (41/397) sarcoma diagnosis rate in the rapid access clinic, only 15% of these were <5 cm better prognosis lesions. This calls into question the "real world" impact of such diagnostic clinics on early diagnosis of sarcomas. In order to enhance generic cancer diagnostic skills, training in these diagnostic clinics could be usefully integrated into national training curricula for both surgical and nonsurgical oncologists.This is the final version of the article. It first appeared from the Hindawi Publishing Corporation via http://dx.doi.org/10.1155/2016/603260

    Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes.

    Get PDF
    Raman spectroscopy is the prime nondestructive characterization tool for graphene and related layered materials. The shear (C) and layer breathing modes (LBMs) are due to relative motions of the planes, either perpendicular or parallel to their normal. This allows one to directly probe the interlayer interactions in multilayer samples. Graphene and other two-dimensional (2d) crystals can be combined to form various hybrids and heterostructures, creating materials on demand with properties determined by the interlayer interaction. This is the case even for a single material, where multilayer stacks with different relative orientations have different optical and electronic properties. In twisted multilayer graphene there is a significant enhancement of the C modes due to resonance with new optically allowed electronic transitions, determined by the relative orientation of the layers. Here we show that this applies also to the LBMs, which can be now directly measured at room temperature. We find that twisting has a small effect on LBMs, quite different from the case of the C modes. This implies that the periodicity mismatch between two twisted layers mostly affects shear interactions. Our work shows that ultralow-frequency Raman spectroscopy is an ideal tool to uncover the interface coupling of 2d hybrids and heterostructures

    The shear mode of multilayer graphene

    Get PDF
    The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ~43 cm−1 in bulk graphite to ~31 cm−1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions

    Evaluating the use of the Child and Adolescent Intellectual Disability Screening Questionnaire (CAIDS-Q) to estimate IQ in children with low intellectual ability

    Get PDF
    In situations where completing a full intellectual assessment is not possible or desirable the clinician or researcher may require an alternative means of accurately estimating intellectual functioning. There has been limited research in the use of proxy IQ measures in children with an intellectual disability or low IQ. The present study aimed to provide a means of converting total scores from a screening tool (the Child and Adolescent Intellectual Disability Screening Questionnaire: CAIDS-Q) to an estimated IQ. A series of linear regression analyses were conducted on data from 428 children and young people referred to clinical services, where FSIQ was predicted from CAIDS-Q total scores. Analyses were conducted for three age groups between ages 6 and 18 years. The study presents a conversion table for converting CAIDS-Q total scores to estimates of FSIQ, with corresponding 95% prediction intervals to allow the clinician or researcher to estimate FSIQ scores from CAIDS-Q total scores. It is emphasised that, while this conversion may offer a quick means of estimating intellectual functioning in children with a below average IQ, it should be used with caution, especially in children aged between 6 and 8 years old

    TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Today it is common to apply multiple potentially conflicting data sources to a given phylogenetic problem. At the same time, several different inference techniques are routinely employed instead of relying on just one. In view of both trends it is becoming increasingly important to be able to efficiently compare different sets of statistical values supporting (or conflicting with) the nodes of a given tree topology, and merging this into a meaningful representation. A tree editor supporting this should also allow for flexible editing operations and be able to produce ready-to-publish figures.</p> <p>Results</p> <p>We developed TreeGraph 2, a GUI-based graphical editor for phylogenetic trees (available from <url>http://treegraph.bioinfweb.info</url>). It allows automatically combining information from different phylogenetic analyses of a given dataset (or from different subsets of the dataset), and helps to identify and graphically present incongruences. The program features versatile editing and formatting options, such as automatically setting line widths or colors according to the value of any of the unlimited number of variables that can be assigned to each node or branch. These node/branch data can be imported from spread sheets or other trees, be calculated from each other by specified mathematical expressions, filtered, copied from and to other internal variables, be kept invisible or set visible and then be freely formatted (individually or across the whole tree). Beyond typical editing operations such as tree rerooting and ladderizing or moving and collapsing of nodes, whole clades can be copied from other files and be inserted (along with all node/branch data and legends), but can also be manually added and, thus, whole trees can quickly be manually constructed de novo. TreeGraph 2 outputs various graphic formats such as SVG, PDF, or PNG, useful for tree figures in both publications and presentations.</p> <p>Conclusion</p> <p>TreeGraph 2 is a user-friendly, fully documented application to produce ready-to-publish trees. It can display any number of annotations in several ways, and permits easily importing and combining them. Additionally, a great number of editing- and formatting-operations is available.</p

    Ultraviolet radiation shapes seaweed communities

    Get PDF

    Timing of glioblastoma surgery and patient outcomes: a multicenter cohort study.

    Get PDF
    BACKGROUND: The impact of time-to-surgery on clinical outcome for patients with glioblastoma has not been determined. Any delay in treatment is perceived as detrimental, but guidelines do not specify acceptable timings. In this study, we relate the time to glioblastoma surgery with the extent of resection and residual tumor volume, performance change, and survival, and we explore the identification of patients for urgent surgery. METHODS: Adults with first-time surgery in 2012–2013 treated by 12 neuro-oncological teams were included in this study. We defined time-to-surgery as the number of days between the diagnostic MR scan and surgery. The relation between time-to-surgery and patient and tumor characteristics was explored in time-to-event analysis and proportional hazard models. Outcome according to time-to-surgery was analyzed by volumetric measurements, changes in performance status, and survival analysis with patient and tumor characteristics as modifiers. RESULTS: Included were 1033 patients of whom 729 had a resection and 304 a biopsy. The overall median time-to-surgery was 13 days. Surgery was within 3 days for 235 (23%) patients, and within a month for 889 (86%). The median volumetric doubling time was 22 days. Lower performance status (hazard ratio [HR] 0.942, 95% confidence interval [CI] 0.893–0.994) and larger tumor volume (HR 1.012, 95% CI 1.010–1.014) were independently associated with a shorter time-to-surgery. Extent of resection, residual tumor volume, postoperative performance change, and overall survival were not associated with time-to-surgery. CONCLUSIONS: With current decision-making for urgent surgery in selected patients with glioblastoma and surgery typically within 1 month, we found equal extent of resection, residual tumor volume, performance status, and survival after longer times-to-surgery

    Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses' Health Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human fibroblast growth factor (FGF) and its receptor (FGFR) play an important role in tumorigenesis. Deregulation of the <it>FGFR2 </it>gene has been identified in a number of cancer sites. Overexpression of the <it>FGFR4 </it>protein has been linked to cutaneous melanoma progression. Previous studies reported associations between genetic variants in the <it>FGFR2 </it>and <it>FGFR4 </it>genes and development of various cancers.</p> <p>Methods</p> <p>We evaluated the associations of four genetic variants in the <it>FGFR2 </it>gene highly related to breast cancer risk and the three common tag-SNPs in the <it>FGFR4 </it>gene with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study (NHS) among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 controls.</p> <p>Results</p> <p>We found no evidence for associations between these seven genetic variants and the risks of melanoma and nonmelanocytic skin cancer.</p> <p>Conclusion</p> <p>Given the power of this study, we did not detect any contribution of genetic variants in the <it>FGFR2 </it>or <it>FGFR4 </it>genes to inherited predisposition to skin cancer among Caucasian women.</p
    corecore