112 research outputs found

    Loss of the Synaptic Vesicle Protein SV2B Results in Reduced Neurotransmission and Altered Synaptic Vesicle Protein Expression in the Retina

    Get PDF
    The Synaptic Vesicle Protein 2 (SV2) family of transporter-like proteins is expressed exclusively in vesicles that undergo calcium-regulated exocytosis. Of the three isoforms expressed in mammals, SV2B is the most divergent. Here we report studies of SV2B location and function in the retina. Immunolabeling studies revealed that SV2B is detected in rod photoreceptor synaptic terminals where it is the primary isoform. In mice lacking SV2B, synaptic transmission at the synapse between photoreceptors and bipolar neurons was decreased, as evidenced by a significant reduction in the amplitude of the b-wave in electroretinogram recordings. Quantitative immunoblot analyses of whole eyes revealed that loss of SV2B was associated with reduced levels of synaptic vesicle proteins including synaptotagmin, VAMP, synaptophysin and the vesicular glutamate transporter V-GLUT1. Immunolabeling studies revealed that SV2B is detected in rod photoreceptor synaptic terminals where it is the primary isoform. Thus, SV2B contributes to the modulation of synaptic vesicle exocytosis and plays a significant role in regulating synaptic protein content

    Mathematical modeling of microRNA-mediated mechanisms of translation repression

    Full text link
    MicroRNAs can affect the protein translation using nine mechanistically different mechanisms, including repression of initiation and degradation of the transcript. There is a hot debate in the current literature about which mechanism and in which situations has a dominant role in living cells. The worst, same experimental systems dealing with the same pairs of mRNA and miRNA can provide ambiguous evidences about which is the actual mechanism of translation repression observed in the experiment. We start with reviewing the current knowledge of various mechanisms of miRNA action and suggest that mathematical modeling can help resolving some of the controversial interpretations. We describe three simple mathematical models of miRNA translation that can be used as tools in interpreting the experimental data on the dynamics of protein synthesis. The most complex model developed by us includes all known mechanisms of miRNA action. It allowed us to study possible dynamical patterns corresponding to different miRNA-mediated mechanisms of translation repression and to suggest concrete recipes on determining the dominant mechanism of miRNA action in the form of kinetic signatures. Using computational experiments and systematizing existing evidences from the literature, we justify a hypothesis about co-existence of distinct miRNA-mediated mechanisms of translation repression. The actually observed mechanism will be that acting on or changing the limiting "place" of the translation process. The limiting place can vary from one experimental setting to another. This model explains the majority of existing controversies reported.Comment: 40 pages, 9 figures, 4 tables, 91 cited reference. The analysis of kinetic signatures is updated according to the new model of coupled transcription, translation and degradation, and of miRNA-based regulation of this process published recently (arXiv:1204.5941). arXiv admin note: text overlap with arXiv:0911.179

    Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System

    Get PDF
    Drosophila melanogaster is emerging as an important model of non-pathogenic host–microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal–microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host–microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host–microbe interactions. Bacterial taxa used in experimental studies are rare or absent in wild Drosophila populations, while the most abundant associates of natural Drosophila populations are rare in the lab

    Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms

    Get PDF

    Complete Genome Sequences of Lactobacillus curvatus KG6, L. curvatus

    No full text

    Selection and improvement of lactic acid bacteria used in meat and sausage fermentation

    No full text
    Summary- Criteria for the selection of lactic acid bacteria (LAS) with application in meat fermenta-tion are: i) suitability for propagation and preparation of starter cultures; and ii) safe performance in the fermenting substrate. The selection has to take in consideration the various, specifie requirements of the fermentation process. In Europe these are usually best fulfilled by strains of Lactobacillus curva-tus (L curvatus) and L sake. Sorne strains of L curvatus exhibit the potential to form tyramine and/or phenylethylamine and should not be used. Strains of L sake are free of this potential. Suitable isolates should be competitive and suppress the growth of undesired organisms. The formation by the strains of bacteriocin (for example curvacin A) can increase their competitiveness. A final proof of the suitability of the isolate is obtained in practical tests. An improvement of LAS in starter cultures can be achieved by either combining compatible strains to increase the overall metabolic activity above that level pre-sent in one single strain or by genetic modification. We have cloned and expressed in L sake and L cur-vatus the genes coding for catalase (katA) and Iysostaphin (lys) by use of vectors derived from LAS plasmids. Catalase activity is a technological important property not present in L curvatus. Its expres-sion was subjected to regulation in response to oxygen as it was observed in the gene donor L sake. Alter removing repetitive sequences in lys, the transformed strains of L sake and L curvatus acquired the potential to kill staphylococci not only in fermenting sausages but also in mayonnaise-based sal-ads
    • …
    corecore