1,829 research outputs found
Improved shape-signature and matching methods for model-based robotic vision
Researchers describe new techniques for curve matching and model-based object recognition, which are based on the notion of shape-signature. The signature which researchers use is an approximation of pointwise curvature. Described here is curve matching algorithm which generalizes a previous algorithm which was developed using this signature, allowing improvement and generalization of a previous model-based object recognition scheme. The results and the experiments described relate to 2-D images. However, natural extensions to the 3-D case exist and are being developed
The impact of satellite temperature soundings on the forecasts of a small national meteorological service
The impact of introducing satellite temperature sounding data on a numerical weather prediction model of a national weather service is evaluated. A dry five level, primitive equation model which covers most of the Northern Hemisphere, is used for these experiments. Series of parallel forecast runs out to 48 hours are made with three different sets of initial conditions: (1) NOSAT runs, only conventional surface and upper air observations are used; (2) SAT runs, satellite soundings are added to the conventional data over oceanic regions and North Africa; and (3) ALLSAT runs, the conventional upper air observations are replaced by satellite soundings over the entire model domain. The impact on the forecasts is evaluated by three verification methods: the RMS errors in sea level pressure forecasts, systematic errors in sea level pressure forecasts, and errors in subjective forecasts of significant weather elements for a selected portion of the model domain. For the relatively short range of the present forecasts, the major beneficial impacts on the sea level pressure forecasts are found precisely in those areas where the satellite sounding are inserted and where conventional upper air observations are sparse. The RMS and systematic errors are reduced in these regions. The subjective forecasts of significant weather elements are improved with the use of the satellite data. It is found that the ALLSAT forecasts are of a quality comparable to the SAR forecasts
The Lockheed OSO-8 program. Analysis of data from the mapping X-ray heliometer experiment
The final report describes the extent of the analysis effort, and other activities associated with the preservation and documentation of the data set are described. The main scientific results, which are related to the behavior of individual solar activity regions in the energy band 1.5 - 15 keV, are summarized, and a complete bibliography of publications and presentations is given. Copies of key articles are also provided
Mucosal Melanomas of the Head and Neck: The Role of Postoperative Radiation Therapy
Objectives. Mucosal melanomas are rarer than their cutaneous counterparts and are associated with a poorer prognosis. We report the clinical outcomes of patients with mucosal melanomas of the head and neck region generally treated with definitive surgery followed by postoperative radiation therapy (RT). Methods. We reviewed the records of 17 patients treated at the University of Miami in 1990–2007. Patients generally received conventionally fractionated RT regimens to the postoperative bed. Elective nodal RT was not routinely delivered. Eight patients received adjuvant chemotherapy or immunotherapy. Results. Median followup was 35.2 months (range 5–225). As the first site of failure: 3 patients recurred locally, 2 regionally and 2 distantly. All 3 patients who recurred locally had not received RT. Of the 5 locoregional recurrences, 4 were salvaged successfully with multimodality therapy with no evidence of disease at last followup. Overall survival was 64.7% at 2 years and 51.5% at 5 years. Conclusions. Patients with mucosal melanoma of the head and neck are best treated with surgery to achieve negative margins, followed by postoperative RT to optimize local control. Elective nodal irradiation may not be indicated in all cases, as regional failures were not predominant. Distant metastases were fewer when compared to historical data, potentially due to advancements in adjuvant therapies as well as aggressive multi-modality salvage at time of failure
Investigation of active regions at high resolution by balloon flights of the Solar Optical Universal Polarimeter (SOUP)
SOUP is a versatile, visible-light solar observatory, built for space or balloon flight. It is designed to study magnetic and velocity fields in the solar atmosphere with high spatial resolution and temporal uniformity, which cannot be achieved from the surface of the earth. The SOUP investigation is carried out by the Lockheed Palo Alto Research Laboratory, under contract to NASA's Marshall Space Flight Center. Co-investigators include staff members at a dozen observatories and universities in the U.S. and Europe. The primary objectives of the SOUP experiment are: to measure vector magnetic and velocity fields in the solar atmosphere with much better spatial resolution than can be achieved from the ground; to study the physical processes that store magnetic energy in active regions and the conditions that trigger its release; and to understand how magnetic flux emerges, evolves, combines, and disappears on spatial scales of 400 to 100,000 km. SOUP is designed to study intensity, magnetic, and velocity fields in the photosphere and low chromosphere with 0.5 arcsec resolution, free of atmospheric disturbances. The instrument includes: a 30 cm Cassegrain telescope; an active mirror for image stabilization; broadband film and TV cameras; a birefringent filter, tunable over 5100 to 6600 A with 0.05 A bandpass; a 35 mm film camera and a digital CCD camera behind the filter; and a high-speed digital image processor
Recommended from our members
Simulation of Positronium: Toward More Realistic Models of Void Spaces in Materials
An exact treatment of the positron and electron in a two-chain, Path Integral Monte Carlo (PIMC) simulation is used to calculate both self-annihilation and pickoff rates at finite temperature. It has already been demonstrated that this technique can reproduce and extend results of simple theories of positrons and positronium (Ps) in spherical voids. Here, we include the effect of the linear dielectric response of a homogeneous material on the annihilation rate of positrons and Ps. In addition, we find lifetimes and structural information for Ps in cylindrical channels, both with and without adsorbed fluid atoms
Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course
Introductory calculus-based physics textbooks state that electromagnetic
waves are transverse and list many of their properties, but most such textbooks
do not bring forth arguments why this is so. Both physical and theoretical
arguments are at a level appropriate for students of courses based on such
books, and could be readily used by instructors of such courses. Here, we
discuss two physical arguments (based on polarization experiments and on lack
of monopole electromagnetic radiation), and the full argument for the
transversality of (plane) electromagnetic waves based on the integral Maxwell
equations. We also show, at a level appropriate for the introductory course,
why the electric and magnetic fields in a wave are in phase and the relation of
their magnitudes.Comment: 10 pages, 6 figure
Activated Magnetospheres of Magnetars
Like the solar corona, the external magnetic field of magnetars is twisted by
surface motions of the star. The twist energy is dissipated over time. We
discuss the theory of this activity and its observational status. (1) Theory
predicts that the magnetosphere tends to untwist in a peculiar way: a bundle of
electric currents (the "j-bundle") is formed with a sharp boundary, which
shrinks toward the magnetic dipole axis. Recent observations of shrinking hot
spots on magnetars are consistent with this behavior. (2) Continual discharge
fills the j-bundle with electron-positron plasma, maintaining a nonthermal
corona around the neutron star. The corona outside a few stellar radii strongly
interacts with the stellar radiation and forms a "radiatively locked" outflow
with a high e+- multiplicity. The locked plasma annihilates near the apexes of
the closed magnetic field lines. (3) New radiative-transfer simulations suggest
a simple mechanism that shapes the observed X-ray spectrum from 0.1 keV to 1
MeV: part of the thermal X-rays emitted by the neutron star are reflected from
the outer corona and then upscattered by the inner relativistic outflow in the
j-bundle, producing a beam of hard X-rays.Comment: 23 pages, 7 figures; review chapter in the proceedings of ICREA
Workshop on the High-Energy Emission from Pulsars and Their Systems, Sant
Cugat, Spain, April 201
- …