51,395 research outputs found

    The B36/S125 "2x2" Life-Like Cellular Automaton

    Full text link
    The B36/S125 (or "2x2") cellular automaton is one that takes place on a 2D square lattice much like Conway's Game of Life. Although it exhibits high-level behaviour that is similar to Life, such as chaotic but eventually stable evolution and the existence of a natural diagonal glider, the individual objects that the rule contains generally look very different from their Life counterparts. In this article, a history of notable discoveries in the 2x2 rule is provided, and the fundamental patterns of the automaton are described. Some theoretical results are derived along the way, including a proof that the speed limits for diagonal and orthogonal spaceships in this rule are c/3 and c/2, respectively. A Margolus block cellular automaton that 2x2 emulates is investigated, and in particular a family of oscillators made up entirely of 2 x 2 blocks are analyzed and used to show that there exist oscillators with period 2^m(2^k - 1) for any integers m,k \geq 1.Comment: 18 pages, 19 figure

    Dense Baryonic Matter and Strangeness in Neutron Stars

    Full text link
    Recent developments of chiral effective field theory (ChEFT) applications to nuclear and neutron matter are summarized, with special emphasis on a (non-perturbative) extension using functional renormalisation group methods. Topics include: nuclear thermodynamics, extrapolations to dense baryonic matter and constraints from neutron star observables. Hyperon-nuclear interactions derived from SU(3) will be discussed with reference to the "hyperon puzzle" in neutron star matter.Comment: 17 pages, 7 figures; invited talk at the Int. Conf. on Quarks and Nuclear Physics (QNP 2018), Tsukuba, Japan; to appear in JPS Conf. Pro

    Yukawa's Pion, Low-Energy QCD and Nuclear Chiral Dynamics

    Full text link
    A survey is given of the evolution from Yukawa's early work, via the understanding of the pion as a Nambu-Goldstone boson of spontaneously broken chiral symmetry in QCD, to modern developments in the theory of the nucleus based on the chiral effective field theory representing QCD in its low-energy limit.Comment: 21 pages, 13 figures. Proc. Yukawa-Tomonaga Symposium, Kyoto, Dec.06; to be publ. in Progr. Theor. Phys. Suppl. (Kyoto

    Hadron Correlations at Energies from GeV to TeV

    Get PDF
    One of the central issues in High Energy Physics is the close interchange between Theory and Experiment. Ever since I know Andrzej Bia{\l}as, I know him as one of the theorists most interested in experimental data. This has naturally led to continuous fruitful contacts. Even though we have been working somehow together since about 1968, we so far have only one single publication in common. This was back in 1969 and it was on means to efficiently study what we then called (exclusive) Multihadron Final States. At that time this meant 3- or at best 4-particle final states of two-hadron collisions at cms energies of some 4 GeV (not TeV!). The field of multiparticle dynamics was in fact the domain of Polish high-energy physicists. The first of a very successful (and still lasting) series of annual International Symposia on Multiparticle Dynamics was organized in Paris in 1970, but essentially by Polish physicists. Andrzej himself was not attending, but it was he who organized the third in these series in (of course) Zakopane. Since heavy ion-collisions, another field of major interest for Andrzej, will be covered by others, I here will restrict myself mainly to the collisions of two elementary particles.Comment: 32 pages, 26 figure

    Chiral Dynamics in Nuclear Systems

    Full text link
    A survey is given on selected topics concerning the role of spontaneous chiral symmetry breaking in low-energy QCD, and its dynamical implications for nuclear systems. This includes aspects of chiral thermodynamics (the temperature and density dependence of the chiral condensate). It also includes an update on the theory of low-energy (s-wave) pion-nuclear interactions relevant for deeply-bound states of pionic atoms and the quest for possible fingerprints of chiral symmetry restoration in nuclear systems.Comment: 16 pages, 5 figures, Proceedings CHIRAL 02, Kyoto, Japa

    Flux cost functions and the choice of metabolic fluxes

    Full text link
    Metabolic fluxes in cells are governed by physical, biochemical, physiological, and economic principles. Cells may show "economical" behaviour, trading metabolic performance against the costly side-effects of high enzyme or metabolite concentrations. Some constraint-based flux prediction methods score fluxes by heuristic flux costs as proxies of enzyme investments. However, linear cost functions ignore enzyme kinetics and the tight coupling between fluxes, metabolite levels and enzyme levels. To derive more realistic cost functions, I define an apparent "enzymatic flux cost" as the minimal enzyme cost at which the fluxes can be realised in a given kinetic model, and a "kinetic flux cost", which includes metabolite cost. I discuss the mathematical properties of such flux cost functions, their usage for flux prediction, and their importance for cells' metabolic strategies. The enzymatic flux cost scales linearly with the fluxes and is a concave function on the flux polytope. The costs of two flows are usually not additive, due to an additional "compromise cost". Between flux polytopes, where fluxes change their directions, the enzymatic cost shows a jump. With strictly concave flux cost functions, cells can reduce their enzymatic cost by running different fluxes in different cell compartments or at different moments in time. The enzymactic flux cost can be translated into an approximated cell growth rate, a convex function on the flux polytope. Growth-maximising metabolic states can be predicted by Flux Cost Minimisation (FCM), a variant of FBA based on general flux cost functions. The solutions are flux distributions in corners of the flux polytope, i.e. typically elementary flux modes. Enzymatic flux costs can be linearly or nonlinearly approximated, providing model parameters for linear FBA based on kinetic parameters and extracellular concentrations, and justified by a kinetic model
    corecore