770 research outputs found

    Charge conservation and time-varying speed of light

    Get PDF
    It has been recently claimed that cosmologies with time dependent speed of light might solve some of the problems of the standard cosmological scenario, as well as inflationary scenarios. In this letter we show that most of these models, when analyzed in a consistent way, lead to large violations of charge conservation. Thus, they are severly constrained by experiment, including those where cc is a power of the scale factor and those whose source term is the trace of the energy-momentum tensor. In addition, early Universe scenarios with a sudden change of cc related to baryogenesis are discarded.Comment: 4 page

    Putting theory oriented evaluation into practice

    Get PDF
    Evaluations of gaming simulations and business games as teaching devices are typically end-state driven. This emphasis fails to detect how the simulation being evaluated does or does not bring about its desired consequences. This paper advances the use of a logic model approach which possesses a holistic perspective that aims at including all elements associated with the situation created by a game. The use of the logic model approach is illustrated as applied to Simgame, a board game created for secondary school level business education in six European Union countries

    Magnetohydrodynamics and Plasma Cosmology

    Full text link
    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.Comment: 9 pages, RevTeX, To appear in the Proceedings of the Peyresq X Meeting, IJTP Conference Serie

    A lattice model for the kinetics of rupture of fluid bilayer membranes

    Full text link
    We have constructed a model for the kinetics of rupture of membranes under tension, applying physical principles relevant to lipid bilayers held together by hydrophobic interactions. The membrane is characterized by the bulk compressibility (for expansion), the thickness of the hydrophobic part of the bilayer, the hydrophobicity and a parameter characterizing the tail rigidity of the lipids. The model is a lattice model which incorporates strain relaxation, and considers the nucleation of pores at constant area, constant temperature, and constant particle number. The particle number is conserved by allowing multiple occupancy of the sites. An equilibrium ``phase diagram'' is constructed as a function of temperature and strain with the total pore surface and distribution as the order parameters. A first order rupture line is found with increasing tension, and a continuous increase in proto-pore concentration with rising temperature till instability. The model explains current results on saturated and unsaturated PC lipid bilayers and thicker artificial bilayers made of diblock copolymers. Pore size distributions are presented for various values of area expansion and temperature, and the fractal dimension of the pore edge is evaluated.Comment: 15 pages, 8 figure

    Magnetized cosmological perturbations

    Get PDF
    A large-scale cosmic magnetic field affects not only the growth of density perturbations, but also rotational instabilities and anisotropic deformation in the density distribution. We give a fully relativistic treatment of all these effects, incorporating the magneto-curvature coupling that arises in a relativistic approach. We show that this coupling produces a small enhancement of the growing mode on superhorizon scales. The magnetic field generates new nonadiabatic constant and decaying modes, as well as nonadiabatic corrections to the standard growing and decaying modes. Magnetized isocurvature perturbations are purely decaying on superhorizon scales. On subhorizon scales before recombination, magnetized density perturbations propagate as magneto-sonic waves, leading to a small decrease in the spacing of acoustic peaks. Fluctuations in the field direction induce scale-dependent vorticity, and generate precession in the rotational vector. On small scales, magnetized density vortices propagate as Alfv\'{e}n waves during the radiation era. After recombination, they decay slower than non-magnetized vortices. Magnetic fluctuations are also an active source of anisotropic distortion in the density distribution. We derive the evolution equations for this distortion, and find a particular growing solution.Comment: Revised version, typos corrected, to appear in Phys. Rev.

    A multistate model of health transitions in older people: a secondary analysis of ASPREE clinical trial data

    Get PDF
    Background: Understanding the nature of transitions from a healthy state to chronic diseases and death is important for planning health-care system requirements and interventions. We aimed to quantify the trajectories of disease and disability in a population of healthy older people. Methods: We conducted a secondary analysis of data from the ASPREE trial, which was done in 50 sites in Australia and the USA and recruited community-dwelling, healthy individuals who were aged 70 years or older (≥65 years for Black and Hispanic people in the USA) between March 10, 2010, and Dec 24, 2014. Participants were followed up with annual face-to-face visits, biennial assessments of cognitive function, and biannual visits for physical function until death or June 12, 2017, whichever occurred first. We used multistate models to examine transitions from a healthy state to first intermediate disease events (ie, cancer events, stroke events, cardiac events, and physical disability or dementia) and, ultimately, to death. We also examined the effects of age and sex on transition rates using Cox proportional hazards regression models. Findings: 19 114 participants with a median age of 74·0 years (IQR 71·6–77·7) were included in our analyses. During a median follow-up of 4·7 years (IQR 3·6–5·7), 1933 (10·1%) of 19 114 participants had an incident cancer event, 487 (2·5%) had an incident cardiac event, 398 (2·1%) had an incident stroke event, 924 (4·8%) developed persistent physical disability or dementia, and 1052 (5·5%) died. 15 398 (80·6%) individuals did not have any of these events during follow-up. The highest proportion of deaths followed incident cancer (501 [47·6%] of 1052) and 129 (12·3%) participants transitioned from disability or dementia to death. Among 12 postulated transitions, transitions from the intermediate states to death had much higher rates than transitions from a healthy state to death. The progression rates to death were 158 events per 1000 person-years (95% CI 144–172) from cancer, 112 events per 1000 person-years (86–145) from stroke, 88 events per 1000 person-years (68–111) from cardiac disease, 69 events per 1000 person-years (58–82) from disability or dementia, and four events per 1000 person-years (4–5) from a healthy state. Age was significantly associated with an accelerated rate for most transitions. Male sex (vs female sex) was significantly associated with an accelerate rate for five of 12 transitions. Interpretation: We describe a multistate model in a healthy older population in whom the most common transition was from a healthy state to cancer. Our findings provide unique insights into the frequency of events, their transition rates, and the impact of age and sex. These results have implications for preventive health interventions and planning for appropriate levels of residential care in healthy ageing populations. Funding: The National Institutes of Health

    Galaxy Clusters as Reservoirs of Heavy Dark Matter and High-Energy Cosmic Rays: Constraints from Neutrino Observations

    Full text link
    Galaxy Clusters (GCs) are the largest reservoirs of both dark matter and cosmic rays (CRs). Dark matter self-annihilation can lead to a high luminosity in gamma rays and neutrinos, enhanced by a strong degree of clustering in dark matter substructures. Hadronic CR interactions can also lead to a high luminosity in gamma rays and neutrinos, enhanced by the confinement of CRs from cluster accretion/merger shocks and active galactic nuclei. We show that IceCube/KM3Net observations of high-energy neutrinos can probe the nature of GCs and the separate dark matter and CR emission processes, taking into account how the results depend on the still-substantial uncertainties. Neutrino observations are relevant at high energies, especially at >10 TeV. Our results should be useful for improving experimental searches for high-energy neutrino emission. Neutrino telescopes are sensitive to extended sources formed by dark matter substructures and CRs distributed over large scales. Recent observations by Fermi and imaging atmospheric Cherenkov telescopes have placed interesting constraints on the gamma-ray emission from GCs. We also provide calculations of the gamma-ray fluxes, taking into account electromagnetic cascades inside GCs, which can be important for injections at sufficiently high energies. This also allows us to extend previous gamma-ray constraints to very high dark matter masses and significant CR injections at very high energies. Using both neutrinos and gamma rays, which can lead to comparable constraints, will allow more complete understandings of GCs. Neutrinos are essential for some dark matter annihilation channels, and for hadronic instead of electronic CRs. Our results suggest that the multi-messenger observations of GCs will be able to give useful constraints on specific models of dark matter and CRs. [Abstract abridged.]Comment: 31 pages, 20 figures, 1 table, accepted for publication in JCAP, references and discussions adde

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (ξ=ξ0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur
    corecore