542 research outputs found

    A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy

    Get PDF
    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young’s modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa–27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (<0.13%) and low strain rates (<1/s) employed by the CEMport maintain a linear stress-to-strain relationship which provides a perturbative measurement of the Young’s modulus. Measurements of blood plasma CEM versus heparin concentration show that CEMport is sensitive to heparin levels below 0.050 U/ml, which suggests future applications in sensing heparin levels of post-surgical cardiopulmonary bypass patients. The portability, high accuracy, and high precision of this device enable new clinical and animal studies for associating CEM with blood coagulation disorders, potentially leading to improved diagnostics and therapeutic monitoring

    Fibrinogen and red blood cells in venous thrombosis

    Get PDF
    Deep vein thrombosis and pulmonary embolism, collectively termed venous thromboembolism (VTE), affect over 1 million Americans each year. VTE is triggered by inflammation and blood stasis leading to the formation of thrombi rich in fibrin and red blood cells (RBCs). However, little is known about mechanisms regulating fibrin and RBC incorporation into venous thrombi, or how these components mediate thrombus size or resolution. Both elevated circulating fibrinogen (hyperfibrinogenemia) and abnormal fibrin(ogen) structure and function, including increased fibrin network density and resistance to fibrinolysis, have been observed in plasmas from patients with VTE. Abnormalities in RBC number and/or function have also been associated with VTE risk. RBC contributions to VTE are thought to stem from their effects on blood viscosity and margination of platelets to the vessel wall. More recent studies suggest RBCs also express phosphatidylserine, support thrombin generation, and decrease fibrinolysis. RBC interactions with fibrin(ogen) and cells, including platelets and endothelial cells, may also promote thrombus formation. The contributions of fibrin(ogen) and RBCs to the pathophysiology of VTE warrants further investigation

    High Sensitivity Micro-Elastometry: Applications in Blood Coagulopathy

    Get PDF
    Highly sensitive methods for the assessment of clot structure can aid in our understanding of coagulation disorders and their risk factors. Rapid and simple clot diagnostic systems are also needed for directing treatment in a broad spectrum of cardiovascular diseases. Here we demonstrate a method for micro-elastometry, named Resonant Acoustic Spectroscopy with Optical Vibrometry (RASOV), which measures the clot elastic modulus (CEM) from the intrinsic resonant frequency of a clot inside a microwell. We observed a high correlation between the CEM of human blood measured by RASOV and a commercial Thromboelastograph (TEG), (R=0.966). Unlike TEG, RASOV requires only 150 μL of sample and offers improved repeatability. Since CEM is known to primarily depend upon fibrin content and network structure, we investigated the CEM of purified clots formed with varying amounts of fibrinogen and thrombin. We found that RASOV was sensitive to changes of fibrinogen content (0.5–6 mg/mL), as well as to the amount of fibrinogen converted to fibrin during clot formation. We then simulated plasma hypercoagulability via hyperfibrinogenemia by spiking whole blood to 150% and 200% of normal fibrinogen levels, and subsequently found that RASOV could detect hyperfibrinogenemia-induced changes in CEM and distinguish these conditions from normal blood

    Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β–induced Serpine1

    Get PDF
    In tumors, extravascular fibrin forms provisional scaffolds for endothelial cell (EC) growth and motility during angiogenesis. We report that fibrin-mediated angiogenesis was inhibited and tumor growth delayed following postnatal deletion of Tgfbr2 in the endothelium of Cdh5-CreERT2 Tgfbr2fl/fl mice (Tgfbr2iECKOmice). ECs from Tgfbr2iECKO mice failed to upregulate the fibrinolysis inhibitor plasminogen activator inhibitor 1 (Serpine1, also known as PAI-1), due in part to uncoupled TGF-β–mediated suppression of miR-30c. Bypassing TGF-β signaling with vascular tropic nanoparticles that deliver miR-30c antagomiRs promoted PAI-1–dependent tumor growth and increased fibrin abundance, whereas miR-30c mimics inhibited tumor growth and promoted vascular-directed fibrinolysis in vivo. Using single-cell RNA-Seq and a NanoString miRNA array, we also found that subtypes of ECs in tumors showed spectrums of Serpine1 and miR-30c expression levels, suggesting functional diversity in ECs at the level of individual cells; indeed, fresh EC isolates from lung and mammary tumor models had differential abilities to degrade fibrin and launch new vessel sprouts, a finding that was linked to their inverse expression patterns of miR-30c and Serpine1 (i.e., miR-30chi Serpine1lo ECs were poorly angiogenic and miR-30clo Serpine1hi ECs were highly angiogenic). Thus, by balancing Serpine1 expression in ECs downstream of TGF-β, miR-30c functions as a tumor suppressor in the tumor microenvironment through its ability to promote fibrin degradation and inhibit blood vessel formation

    Imaging and Elastometry of Blood Clots Using Magnetomotive Optical Coherence Tomography and Labeled Platelets

    Get PDF
    Improved methods for imaging and assessment of vascular defects are needed for directing treatment of cardiovascular pathologies. In this paper, we employ magnetomotive optical coherence tomography (MMOCT) as a platform both to detect and to measure the elasticity of blood clots. Detection is enabled through the use of rehydrated, lyophilized platelets loaded with superparamagnetic iron oxides (SPIO-RL platelets) that are functional infusion agents that adhere to sites of vascular endothelial damage. Evidence suggests that the sensitivity for detection is improved over threefold by magnetic interactions between SPIOs inside RL platelets. Using the same MMOCT system, we show how elastometry of simulated clots, using resonant acoustic spectroscopy, is correlated with the fibrin content of the clot. Both methods are based upon magnetic actuation and phase-sensitive optical monitoring of nanoscale displacements using MMOCT, underscoring its utility as a broad-based platform to detect and measure the molecular structure and composition of blood clots

    The fibrinogen γA/γ′ isoform does not promote acute arterial thrombosis in mice

    Get PDF
    Elevated plasma fibrinogen associates with arterial thrombosis in humans and promotes thrombosis in mice by increasing fibrin formation and thrombus fibrin content. Fibrinogen is composed of six polypeptide chains: (Aα, Bβ, and γ)2. Alternative splicing of the γ chain leads to a dominant form (γA/γA) and a minor species (γA/γ’). Epidemiologic studies have detected elevated γA/γ’ fibrinogen in patients with arterial thrombosis, suggesting this isoform promotes thrombosis. However, in vitro data show that γA/γ’ is anticoagulant due to its ability to sequester thrombin, and suggest its expression is upregulated in response to inflammatory processes

    Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: correlation with tissue factor and PAR2 expression

    Get PDF
    BackgroundDespite the association of cancer-derived circulating tissue factor (TF)-containing microvesicles and hypercoagulable state, correlations with the incidence of thrombosis remain unclear.MethodsIn this study the upregulation of TF release upon activation of various cancer cell lines, and the correlation with TF and PAR2 expression and/or activity was examined. Microvesicle release was induced by PAR2 activation in seventeen cell lines and released microvesicle density, microvesicle-associated TF activity, and phoshpatidylserine-mediated activity were measured. The time-course for TF release was monitored over 90 min in each cell line. In addition, TF mRNA expression, cellular TF protein and cell-surface TF activities were quantified. Moreover, the relative expression of PAR2 mRNA and cellular protein were analysed. Any correlations between the above parameters were examined by determining the Pearson’s correlation coefficients.ResultsTF release as microvesicles peaked between 30–60 min post-activation in the majority of cell lines tested. The magnitude of the maximal TF release positively correlated with TF mRNA (c = 0.717; p
    • …
    corecore