5 research outputs found

    Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.)

    No full text
    Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-d-erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed

    Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha

    No full text
    Genistein and apigenin are phytoestrogens present in commercial preparations used for the treatment of postmenopausal symptoms. In this study, we assessed the influence of these compounds on mammary tumor growth. Both compounds stimulate the proliferation of MCF-7 and T47D cells [estrogen receptor alpha (ERalpha-positive)], but do not stimulate the proliferation of an ERalpha-negative cell line (MDA-MB-435 cells). Genistein appeared more efficient in this regard due to its higher binding affinity for ERalpha, a property explained by a structural analysis of the binding of these compounds to the ERalpha's ligand binding domain. As previously described for estradiol (E(2)), genistein and apigenin down regulated ERalpha and enhanced estrogen response element (ERE)-dependent gene expression. The additional finding that genistein antagonizes the anti-proliferative effect of hydroxytamoxifen suggests phytoestrogens may be detrimental in women with breast cancer who are being treated with tamoxifen. In addition, because of their ability to stimulate breast cell growth, the widespread use of phytoestrogens in postmenopausal women could be detrimental.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore