230 research outputs found

    Does influenza A infection increase oxidative damage?

    Get PDF
    Considerable data implicate oxidative damage in influenza pathogenesis. We examined temporal changes in oxidative damage using accurate biomarkers in an adult cohort with acute influenza infection and their relationships with clinical parameters. Clinical information and blood samples were collected during their acute illness and 3 months later. A fatigue questionnaire was administered 3 months following influenza infection. Thirty-five patients (mean age, 34 years) with polymerase chain reaction-confirmed influenza A infection were included; all patients returned for follow-up assessments. Adjusted levels of plasma F2-isoprostanes, total hydroxyeicosatetraenoic products (HETEs), 7beta-hydroxycholesterol and 7-ketocholesterol, serum gamma-glutamyltransferase, and high-sensitivity C-reactive protein (hsCRP) were increased during the acute illness compared with age-matched controls. Despite clinical recovery, levels of these biomarkers remained higher at month 3 compared with controls. A proportion of patients had persistent symptoms such as fatigue (23%), myalgia (14%), and arthralgia (11%) at month 3. Patients with significant fatigue had higher baseline levels of plasma F2-isoprostanes, F4-neuroprostanes, and total HETEs compared to those without fatigue. By contrast, patients with persistent arthralgia and myalgia had higher baseline levels of serum hsCRP compared to those without these symptoms. Our observations lead to the hypothesis that oxidative damage participates in the pathogenesis of influenza infection and postinfectious fatigue.published_or_final_versio

    Latent atrophy factors related to phenotypical variants of posterior cortical atrophy

    Get PDF
    OBJECTIVE: To determine whether atrophy relates to phenotypical variants of posterior cortical atrophy (PCA) recently proposed in clinical criteria; dorsal, ventral, dominant-parietal and caudal, we assessed associations between latent atrophy factors and cognition. METHODS: We employed a data-driven Bayesian modelling framework based on latent Dirichlet allocation to identify latent atrophy factors in a multi-center cohort of 119 individuals with PCA (age:64±7, 38% male, MMSE:21±5, 71% amyloid-β-positive, 29% amyloid-β status unknown). The model uses standardized gray matter density images as input (adjusted for age, sex, intracranial volume, field-strength and whole-brain gray matter volume) and provides voxelwise probabilistic maps for a predetermined number of atrophy factors, allowing every individual to express each factor to a degree without a-priori classification. Individual factor expressions were correlated to four PCA-specific cognitive domains (object-perception, space-perception, non-visual/parietal functions and primary visual processing) using general linear models. RESULTS: The model revealed four distinct yet partially overlapping atrophy factors; right-dorsal, right-ventral, left-ventral, and limbic. We found that object-perception and primary visual processing were associated with atrophy that predominantly reflects the right-ventral factor. Furthermore, space-perception was associated with atrophy that predominantly represents the right-dorsal and right-ventral factors. However, individual participant profiles revealed that the vast majority expressed multiple atrophy factors and had mixed clinical profiles with impairments across multiple domains, rather than displaying a discrete clinical-radiological phenotype. CONCLUSION: Our results indicate that particular brain-behavior networks are vulnerable in PCA, but most individuals display a constellation of affected brain-regions and symptoms, indicating that classification into four mutually exclusive variants is unlikely to be clinically useful

    Rare Copy Number Deletions Predict Individual Variation in Intelligence

    Get PDF
    Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed

    Elastogenic Protein Expression of a Highly Elastic Murine Spinal Ligament: The Ligamentum Flavum

    Get PDF
    Spinal ligaments, such as the ligamentum flavum (LF), are prone to degeneration and iatrogenic injury that can lead to back pain and nerve dysfunction. Repair and regeneration strategies for these tissues are lacking, perhaps due to limited understanding of spinal ligament formation, the elaboration of its elastic fibers, maturation and homeostasis. Using immunohistochemistry and histology, we investigated murine LF elastogenesis and tissue formation from embryonic to mature postnatal stages. We characterized the spatiotemporal distribution of the key elastogenic proteins tropoelastin, fibrillin-1, fibulin-4 and lysyl oxidase. We found that elastogenesis begins in utero with the microfibril constituent fibrillin-1 staining intensely just before birth. Elastic fibers were first detected histologically at postnatal day (P) 7, the earliest stage at which tropoelastin and fibulin-4 stained intensely. From P7 to P28, elastic fibers grew in diameter and became straighter along the axis. The growth of elastic fibers coincided with intense staining of tropoelastin and fibulin-4 staining, possibly supporting a chaperone role for fibulin-4. These expression patterns correlated with reported skeletal and behavioral changes during murine development. This immunohistochemical characterization of elastogenesis of the LF will be useful for future studies investigating mechanisms for elastogenesis and developing new strategies for treatment or regeneration of spinal ligaments and other highly elastic tissues

    Activation of Hypoxia Inducible Factor 1 Is a General Phenomenon in Infections with Human Pathogens

    Get PDF
    Background: Hypoxia inducible factor (HIF)-1 is the key transcriptional factor involved in the adaptation process of cells and organisms to hypoxia. Recent findings suggest that HIF-1 plays also a crucial role in inflammatory and infectious diseases. Methodology/Principal Findings: Using patient skin biopsies, cell culture and murine infection models, HIF-1 activation was determined by immunohistochemistry, immunoblotting and reporter gene assays and was linked to cellular oxygen consumption. The course of a S. aureus peritonitis was determined upon pharmacological HIF-1 inhibition. Activation of HIF-1 was detectable (i) in all ex vivo in biopsies of patients suffering from skin infections, (ii) in vitro using cell culture infection models and (iii) in vivo using murine intravenous and peritoneal S. aureus infection models. HIF-1 activation by human pathogens was induced by oxygen-dependent mechanisms. Small colony variants (SCVs) of S. aureus known to cause chronic infections did not result in cellular hypoxia nor in HIF-1 activation. Pharmaceutical inhibition of HIF-1 activation resulted in increased survival rates of mice suffering from a S. aureus peritonitis. Conclusions/Significance: Activation of HIF-1 is a general phenomenon in infections with human pathogenic bacteria, viruses, fungi and protozoa. HIF-1-regulated pathways might be an attractive target to modulate the course of life-threatening infections

    Comprehensive Genotyping in Two Homogeneous Graves' Disease Samples Reveals Major and Novel HLA Association Alleles

    Get PDF
    BACKGROUND: Graves' disease (GD) is the leading cause of hyperthyroidism and thyroid eye disease inherited as a complex trait. Although geoepidemiology studies showed relatively higher prevalence of GD in Asians than in Caucasians, previous genetic studies were contradictory concerning whether and/or which human leukocyte antigen (HLA) alleles are associated with GD in Asians. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a case-control association study (499 unrelated GD cases and 504 controls) and a replication in an independent family sample (419 GD individuals and their 282 relatives in 165 families). To minimize genetic and phenotypic heterogeneity, we included only ethnic Chinese Han population in Taiwan and excluded subjects with hypothyroidism. We performed direct and comprehensive genotyping of six classical HLA loci (HLA-A, -B, -C, -DPB1, -DQB1 and -DRB1) to 4-digit resolution. Combining the data of two sample populations, we found that B*46:01 (odds ratio under dominant model [OR]  = 1.33, Bonferroni corrected combined P [P(Bc)]  = 1.17 x 10⁻²), DPB1*05:01 (OR  = 2.34, P(Bc) = 2.58 x 10⁻¹⁰), DQB1*03:02 (OR  = 0.62, P(Bc)  = 1.97 x 10⁻²), DRB1*15:01 (OR  = 1.68, P(Bc) = 1.22 x 10⁻²) and DRB1*16:02 (OR  = 2.63, P(Bc)  = 1.46 x 10⁻⁵) were associated with GD. HLA-DPB1*05:01 is the major gene of GD in our population and singly accounts for 48.4% of population-attributable risk. CONCLUSIONS/SIGNIFICANCE: These GD-associated alleles we identified in ethnic Chinese Hans, and those identified in other Asian studies, are totally distinct from the known associated alleles in Caucasians. Identification of population-specific association alleles is the critical first step for individualized medicine. Furthermore, comparison between different susceptibility/protective alleles across populations could facilitate generation of novel hypothesis about GD pathophysiology and indicate a new direction for future investigation
    corecore