25 research outputs found

    Beyond a pale blue dot : how to search for possible bio-signatures on earth-like planets

    Full text link
    The Earth viewed from outside the Solar system would be identified merely like a pale blue dot, as coined by Carl Sagan. In order to detect possible signatures of the presence of life on a second earth among several terrestrial planets discovered in a habit-able zone, one has to develop and establish a methodology to characterize the planet as something beyond a mere pale blue dot. We pay particular attention to the periodic change of the color of the dot according to the rotation of the planet. Because of the large-scale inhomogeneous distribution of the planetary surface, the reflected light of the dot comprises different color components corresponding to land, ocean, ice, and cloud that cover the surface of the planet. If we decompose the color of the dot into several principle components, in turn, one can identify the presence of the different surface components. Furthermore, the vegetation on the earth is known to share a remarkable reflection signature; the reflection becomes significantly enhanced at wave-lengths longer than 760nm, which is known as a red-edge of the vegetation. If one can identify the corresponding color signature in a pale blue dot, it can be used as a unique probe of the presence of life. I will describe the feasibility of the methodology for future space missions, and consider the direction towards astrobiology from an astrophysicist's point of view.Comment: 11 pages, 5 figures, published in Yamagishi A., Kakegawa T., Usui T. (eds) Astrobiology. Springer, Singapore (2019

    Parsons, Laurence

    No full text

    Possible Demagnetization Effect on the Moon

    No full text

    Volatiles in submarine glasses as a discriminant of tectonic origin: application to the Troodos ophiolite

    No full text
    ISOTOPE ratios and concentrations of incompatible trace elements are remarkably successful in discriminating the tectonic origin and magmatic source components for basalts1–5. But problems remain with discriminating the tectonic origin of some tholeiites, especially where field relations and other geological evidence are ambiguous. For example, the tectonic origin of basalts from the Troodos ophiolite (Cyprus) has been debated for several decades. Most workers have been unable to distinguish between an island-arc and/or back-arc origin for the ophiolite6–8. Here we use volatile, K2O and TiO2 contents from ∼250 fresh submarine volcanic glasses to discriminate between tholeiites from different tectonic regimes. K2O÷H2O ratios are lower (<0.70) in spread ing-centre glasses than in those from island arcs and intraplate oceanic islands. Back-arc-basin basalts can generally be separated from mid-ocean-ridge basalts by their high H2O contents. Using this information, we show that some fresh glasses from the Troodos ophiolite have a clear back-arc-basin affinity
    corecore